

TS9002 Demo Board

Low-Power Single/Dual-Supply Dual Comparator with Reference

FEATURES

- Single or Dual Power Supplies: Single: +2.5V to +11V Dual: ±1.25V to ±5.5V
- Internal 1.182V ±0.75% Reference
- Fully Assembled and Tested
- Push-pull TTL/CMOS-Compatible Outputs
- > 2in x 2in 2-layer circuit board

DESIGNATION	QTY	DESCRIPTION
C1	1	0.1µF ± 10% capacitors (0805)
R1	1	$20k\Omega \pm 1\%$ resistor (0805)
R2	1	2.4MΩ ± 1% resistor (0805)
U1	1	TS9002 Comparator
INA+, INB-, HYST, VDD, OUT_B, OUT_A, REF, GND (7)	14	Test points

Table 1. Component List

DESCRIPTION The demo board for the TS9002 is a completely

The demo board for the TS9002 is a completely assembled and tested circuit board that can be used for evaluating the TS9002. The TS9002 joins Touchstone's TS9001-1/2 analog comparators in the "NanoWatt AnalogTM" high performance analog integrated circuits portfolio. The TS9002 can operate from single +2.5V to +11V supplies or from ±1.25V to ±5.5V dual supplies.

The TS9002 incorporates an internal $1.182V \pm 0.75\%$ voltage reference. Without complicated feedback configurations and only requiring two additional resistors, adding external hysteresis via a separate pin is available on the TS9002's HYST pin.

The TS9002 is fully specified over the -40°C to +85°C temperature range and is available in a 8-pin MSOP package.

Product data sheets and additional documentation can be found on factory web site at <u>www.touchstonesemi.com</u>.

ORDERING INFORMATION

Order Number	Description
TS9002DB	Demo Board

Figure 2. TS9002 Evaluation Board (Bottom View)

Figure 1. TS9002 Evaluation Board (Top View)

DESCRIPTION

The demo board provides a configuration where only two resistors are required to set the hysteresis band ,V_{HB}, as shown in Figure 3. Resistor R1 is connected between REF and HYST and R2 is connected between HYST and V-. This will increase the trip point for the rising input voltage, V_{THR} , and decrease the trip point for the falling input voltage, V_{THF} , by the same amount. If no hysteresis is required, connect HYST to REF. The hysteresis band, V_{HB} , is voltage across the REF and HYST pin multiplied by a factor of 2. The HYST pin can accept a voltage between REF and REF-50mV, where a voltage of REF-50mV generates the maximum voltage across R1 and thus, the maximum hysteresis and hysteresis band of 50mV and 100mV, respectively. On the board, V-(pin 2) is labeled as GND.

To design the circuit for a desired hysteresis band, consider the equations below to acquire the values for resistors R1 and R2:

$$R1 = \frac{V_{HB}}{(2 \times I_{REF})}$$
$$R2 = \frac{1.182 - \frac{V_{HB}}{2}}{I_{REF}}$$

The TS9002 demo board provides R1 = $20k\Omega$ and R2 = $2.4M\Omega$. This sets the hysteresis band to V_{HB} = 20mV.

QUICK START PROCEDURES

Required Equipment

- > TS9002DB demo board
- A DC Power Supply, an HP Model HP6624A or equivalent
- A Precision DC Source/Calibrator, a Krohn-Hite Model 526 or equivalent
- A Digital Voltmeter
- A Digital Ammeter
- Oscilloscope Model Agilent DSO1014A or equivalent (AC input only)
- > $1M\Omega$ oscilloscope probe (AC input only)

Function Generator (AC test only)

To evaluate the TS9002 comparators, the following steps are to be performed:

- Before connecting the DC power supply to the demo board power test points, turn on the power supply and set the DC voltage to 5V and then turn it off.
- 2) Set the DC source/calibrator voltage to 1.182V and turn it off.
- Connect the positive terminal of the DC power supply to the V_{DD} jumper on the demo board and the negative terminal to the positive terminal of the ammeter. Then, connect the negative terminal of the ammeter to a GND jumper on the demo board.
- Connect the positive terminal of the DC source/calibrator to the INA+ jumper on the demo board and the negative terminal to a GND jumper on the demo board.
- 5) Connect the positive terminal of the DC voltmeter to the OUT_A jumper on the demo board and the negative terminal to a GND jumper on the demo board.
- 6) Turn on the power supply and the DC source/calibrator and check that the power supply current is approximately 3μA.
- 7) Slowly increase the DC source/calibrator voltage until the output of the comparator switches to approximately 5V. Refer to the voltmeter. The output should switch from a low state to a high state at approximately 1.192V. The power supply current is now approximately 3.6µA
- 8) Now, slowly decrease the DC source/calibrator voltage until the output of the comparator drops to approximately 0V. Refer to the voltmeter. The output should switch from a high state to a low state at approximately 1.172V. The power supply current is approximately 3µA.
- 9) To check the HYST pin voltage or the reference voltage, connect the positive terminal of a voltmeter to the HYST or REF jumper on the demo board and the negative terminal to a GND jumper on the demo board.

10) If testing with an AC input signal is desired, use a function generator and set the offset voltage, amplitude, and frequency to 1.182V, 100mV, and 1kHz, respectively. Connect the positive terminal of the function generator to the INA+ jumper and the negative terminal to the GND jumper on the board. Then, use the oscilloscope and the oscilloscope probe to monitor the output OUT_A.

11) If the evaluation of comparator B is desired, follow the previous steps. However, note that the output signal OUT_B is the inverted version comparator A's output OUT_A.

Figure 4. Top Layer Component View

Figure 5. Top Layer Trace View

Figure 6. Bottom Layer #1

Figure 7. Bottom Layer #2

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331