N

MICROCHIP

dsPIC30F5011/5013
Data Sheet

High-Performance,
16-bit Digital Signal Controllers

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—I1S0/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KeeLoaq, KEeLoa logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2011, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

f‘} Printed on recycled paper.

ISBN: 978-1-60932-843-6

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70116J-page 2

© 2011 Microchip Technology Inc.

MICROCHIP dsPIC30F5011/5013

High-Performance, Digital Signal Controllers

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC Pro-
grammer’s Reference Manual”
(DS70157).

High-Performance Modified RISC CPU:

» Modified Harvard architecture
» C compiler optimized instruction set architecture
* Flexible addressing modes
» 83 base instructions
+ 24-bit wide instructions, 16-bit wide data path
+ 66 Kbytes on-chip Flash program space
+ 4 Kbytes of on-chip data RAM
* 1 Kbyte of nonvolatile data EEPROM
* 16 x 16-bit working register array
* Up to 30 MIPS operation:
- DC to 40 MHz external clock input

- 4 MHz-10 MHz oscillator input with
PLL active (4x, 8x, 16x)

» Up to 41 interrupt sources:
- Eight user selectable priority levels
- Five external interrupt sources
- Four processor traps

DSP Features:

¢ Dual data fetch
¢ Modulo and Bit-Reversed modes

» Two 40-bit wide accumulators with optional
saturation logic

» 17-bit x 17-bit single cycle hardware fractional/
integer multiplier

« All DSP instructions are single cycle
- Multiply-Accumulate (MAC) operation
+ Single cycle 16 shift

Peripheral Features:

+ High-current sink/source 1/O pins: 25 mA/25 mA

+ Five 16-bit timers/counters; optionally pair up
16-bit timers into 32-bit timer modules

» 16-bit Capture input functions
* 16-bit Compare/PWM output functions

» Data Converter Interface (DCI) supports common
audio codec protocols, including I°S and AC’97

+ 3-wire SPI modules (supports four Frame modes)

« 12C™ module supports Multi-Master/Slave mode
and 7-bit/10-bit addressing

* Two addressable UART modules with FIFO
buffers

» Two CAN bus modules compliant with CAN 2.0B
standard

Analog Features:

» 12-bit Analog-to-Digital Converter (ADC) with:
- 200 ksps conversion rate
- Up to 16 input channels
- Conversion available during Sleep and Idle
* Programmable Low-Voltage Detection (PLVD)

* Programmable Brown-out Detection and Reset
generation

Special Microcontroller Features:

» Enhanced Flash program memory:

- 10,000 erase/write cycle (min.) for
industrial temperature range, 100K (typical)

» Data EEPROM memory:

- 100,000 erase/write cycle (min.) for
industrial temperature range, 1M (typical)

 Self-reprogrammable under software control

* Power-on Reset (POR), Power-up Timer (PWRT)
and Oscillator Start-up Timer (OST)

* Flexible Watchdog Timer (WDT) with on-chip
low- power RC oscillator for reliable operation

» Fail-Safe Clock Monitor operation:

- Detects clock failure and switches to on-chip
low-power RC oscillator

* Programmable code protection

* In-Circuit Serial Programming™ (ICSP™)
programming capability

+ Selectable Power Management modes:
- Sleep, Idle and Alternate Clock modes

© 2011 Microchip Technology Inc.

DS70116J-page 3

dsPIC30F5011/5013

CMOS Technology:

* Low-power, high-speed Flash technology

» Wide operating voltage range (2.5V to 5.5V)
* Industrial and Extended temperature ranges
* Low power consumption

TABLE 1: dsPIC30F5011/5013 CONTROLLER FAMILY

. | Program Memory | spam|EEPROM | Timer [Input | OUPY! | Codec |AD120bit| & | & |2 | Z

Device Pins . Comp/Std < |6 | O <
Bytes | Instructions Bytes | Bytes | 16-bit | Cap PWM Interface | 200 ksps | 5 o | O

dsPIC30F5011 | 64 | 66K 22K 4096 1024 5 8 8 AC'97,1°S| 16ch 112
dsPIC30F5013 | 80 | 66K 22K 4096 1024 5 8 8 AC97,1°S| 16¢ch 21212

DS70116J-page 4 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

Pin Diagrams

64-Pin TQFP

COFS/RG15
T2CK/RC1

T3CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8

MCLR

SS2/CN11/RG9

Vss

VDD

ANS5/IC8/CN7/RB5
ANA4/IC7/CN6/RB4
ANB3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
AN1/VREF-/CN3/RB1
ANO/VREF+/CN2/RBO

Q0000n0ananaanan

0N O WN -

[N)
o~ WN = O

64— CSDO/RG13
63— CSDI/RG12

62— CSCK/RG14
61— C2RX/RGO
60— C2TX/RG1
59— C1TX/RF1

58— C1RX/RFO0
55— 0CB8/CN16/RD7
54— 0OC7/CN15/RD6

57—VDD
56— Vss

dsPIC30F5011

53— 0C6/IC6/CN14/RD5
52— 0C5/IC5/CN13/RD4
51— 0C4/RD3
50— 0OC3/RD2

49— EMUD2/OC2/RD1

48
47
48
45
44
43
42
41
40
39
38
37
36
35
34
33

(oooooouooooooonn

PGC/EMUC/AN6/OCFA/RB6 T—17

PGD/EMUD/AN7/RB7 —18

AVDD 19
AVss 20

AN8/RB8 /21

Vss =25
Vbb 26

AN9/RB9 /22
AN10/RB10 /23
AN11/RB11 24
AN12/RB12 /27

AN13/RB13 /28

AN14/RB14 /29

AN15/0CFB/CN12/RB15 /30

U2RX/CN17/RF4 =31

U2TX/CN18/RF5 —32

EMUC1/SOSCO/T1CK/CNO/RC14
EMUD1/SOSCI/T4ACK/CN1/RC13
EMUC2/0C1/RDO
IC4/INT4/RD11

IC3/INT3/RD10

IC2/INT2/RD9

IC1/INT1/RD8

Vss

OSC2/CLKO/RC15

OSC1/CLKI

VDD

SCL/RG2

SDA/RG3
EMUC3/SCK1/INTO/RF6
U1RX/SDI1/RF2
EMUD3/U1TX/SDO1/RF3

© 2011 Microchip Technology Inc.

DS70116J-page 5

dsPIC30F5011/5013

Pin Diagrams (Continued)

80-Pin TQFP

N O T ™ E
(el alialali~ x
2w 3 o xroex 8
OCH0Z2aopLl SIS a0
Ty pgpgoggl zzzzs poaq
O =X 33X XXX OO0 V0 sFFEXAQ
OO0 O NANEEFRFREZapRO®KNOow = =<0 2
DN NZZANNT—T-0O OO0 L WO =S
OO O0O00VOLLLO>S>0000LL0O0W
BRRRNPLRIRPANCTIR3ELE883I 35
coFsiRe15 1 1° 60 1 EMUC1/SOSCO/T1CK/CNO/RC14
TockiRCt [2 59 1 EMUD1/SOSCI/CN1/RC13
Tackrc2 L] 3 58 |1 EMUC2/0C1/RDO
Tackires T 4 57 [1 1C4/RD11
T5CK/RC4 [5 56 1 IC3/RD10
SCK2/CN8/RG6 6 55 [1 IC2/RD9
SDI2ICNO/RG7 7 54 [11C1/RD8
SDO2/CN10/RG8 [_| 8 53 1 INT4/RA15
MCLR[9 52 1 INT3/RA14
SS2/CN11/RG9 [10 dsPIC30F5013 51 [Vss
vss [11 50 [__] OSC2/CLKO/RC15
vop [12 49 [OSC1/CLKI
INT1/RA12 13 48 [VoD
INT2/RA13 [14 47] SCLIRG2
AN5/CN7/RB5 | 15 46 [SDA/RG3
AN4/CN6/RB4 [16 45 [_] EMUC3/SCK1/INTO/RF6
AN3/CN5/RB3 [17 44 SDI1/RF7
AN2/SST/LVDIN/CN4/RB2 [18 43 1 EMUD3/SDO1/RF8
PGC/EMUC/AN1/CN3/RB1 19 42 [1 UIRX/RF2
PGD/EMUD/ANO/CN2/RBO | 20 41 [U1TX/RF3
~— N O I O O N~ 0O DO —~— AN M T O © N 0 O O
AN N N N AN NN ANANOODOOHOOHOOH OO OO
O NN OO O O W 0 OO O« N ON M I O - O S v
NN 0PN MOT- T 9 O - - -« «— W LW
< > o >
EEeEzccECRPR S hBpRRREL
T & x x roxoooeo
SN 2%2S: 323983z ¢%
w z Z z2zzzZz2z2 2z
o "~k Zz £%2%53858%%
z E58%S
< O — — O O
Q
n
P4
<

DS70116J-page 6

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

Table of Contents

1.0 DEVICE OVEIVIEWneeiieeeiieeetieeeeteeeeetee e sttt e e et e e asueee s steeeaasaeaesaseeeeasseeeamsseeeeasseeeamseeeeneeeamseeeeanseeeaasseeeansseeesnsseeeanneeaesnseeeanneenennes 9
2.0 CPU ArChIECIUIE OVEIVIEW.......oiuiiiieiiiiiei ettt h e e bt eh et e b e s h e e et e e b e e b e e e et e e she e e b e e e be e e b e e sheeete e e b e e sbeesaneeas 15
I O (=Y To T YA @ o F- a1 72T o] o WO PSRRI 23
4.0 Interrupts .
5.0 AdAress GeNerator UNItS........c...ii ittt ettt sttt b e eh e e s bt e et e eshe e e b e e e he e e b e e sae e et e e e b e e saeeeaae e
6.0 FIasSh Program IMEIMOIYcooiiiiiiiiiee ettt ettt ettt ettt e e at et e ettt e e e be e a2 aabe e e 4 s b e e e 2 abe e aab e e e e bbb e e e bbb e e ente e e e amneeeannbeeeaneeeeannee
7.0 Data EEPROM MEMOTY ..ottt ettt ettt ettt h ettt e h et e bt e e et e oo h et et e e b et e ea e eb et e et e e ehe e e bt e ebs e e bt e nbneeateeenbeenneeenneens
S V@ B =Ty TSRS U USRS
9.0 Timer1 Module
O 0T T4 T= T2 B 1V o T [1= USSR
T1.0 TIMEIA/S IMOTUIE ...ttt e bt bttt e s he e e bt e b e st e e sae e et e e ehs e e b e e s ae e e bt e st e e bt e e ateesaee st e enanas
12.0 Input Capture Module......
13.0 Output Compare Module.
14.0 SPI™ Module
T5.0 T2C™ IMOGUIE ...ttt ettt h et h et h e st n bt e e bt e s e e b e oo e e b e e aeeh e e ae e nh e e et e AR e Re e Rt e h e e e Rt Rt E e at e n e nan e ne e re e

16.0 Universal Asynchronous Receiver Transmitter (UART) MOQUIEcc.oiiiiiiiiiiiiii et 99
17.0 CAN MOGUIE ..ottt 107
18.0 Data Converter Interface (DCI) Module.....
19.0 12-bit Analog-to-Digital Converter (ADC) Module ..
A N OIS V) (= g T 01 Yo = 1o o EO USRI 137
21.0 INSTUCION SEE SUMIMETYc..tiiiiiiiiii ettt ettt b e e sttt e et e ehe e et e e ea e e e bt e shee e e s e e b e e eReeemb e e embe e abeeembeesheesmbeeseeebeesneeannes 151
22.0 Development Support
23.0 EIECtriCal CharaCteriSTICSoiiiiiiie ettt ettt et sttt e st s ae e et e e s he e e bt e s et e e ebe e e ate et e e esbeesaneetee e
24.0 Packaging INfOrMAtION.ccuiiiiiiiii ettt ettt bt e he e e bt e e a b e e bt e she e e abe e bt e eaeeen b e e smbe e ebeeembeesheesmbeeneeebeesnneennes

THE MICTOCIID WED SIE.... . ettt ettt e ettt e ekt e e ettt e oo as b e e e aase e e e as e eane e e e aanee e e ambe e e easbe e e anbeeesaneeaeanneeeesnnneaaannnas
Customer Change Notification Service ..
[TS] (o731 S TUT o o Yo PSPPSR
REAAET RESPONSE ...ttt ettt ettt e e ekt e e ettt e e aaeeee e eate e e e aaeee e aabeee e 2 beeeeambeee e aeeeeanbeee e s beeeaasbeeeamtbeaeeaseeeeanseeeabneeeasnaeaane
Product IdentifiCation SYSIEMottt h ettt e e b e e s bt e et e e abe e be e e R bt e b e e eR bt e Ee e be e eheeanteeenbeebeeaneean

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

* Microchip’s Worldwide Web site; http://www.microchip.com
* Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

© 2011 Microchip Technology Inc. DS70116J-page 7

mailto:docerrors@microchip.com
http://www.microchip.com
http://www.microchip.com

dsPIC30F5011/5013

NOTES:

DS70116J-page 8 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”

(DS70157).

This document contains specific information for the
dsPIC30F5011/5013 Digital Signal Controller (DSC)
devices. The dsPIC30F5011/5013 devices contain
extensive Digital Signal Processor (DSP) functionality
within a high-performance 16-bit microcontroller (MCU)
architecture. Figure 1-1 and Figure 1-2 show device
block diagrams for dsPIC30F5011 and dsPIC30F5013,
respectively.

© 2011 Microchip Technology Inc.

DS70116J-page 9

dsPIC30F5011/5013

ANO/VREF+/CN2/RBO
AN1/VREF-/CN3/RB1
AN2/SS1/LVDIN/CNA4/RB2
AN3/CN5/RB3
AN4/IC7/CNB/RB4
ANS/IC8/CN7/RB5
PGC/EMUC/ANG/OCFA/RB6
PGD/EMUD/AN7/RB7
ANB/RB8
AN9/RBY
AN10/RB10
AN11/RB11

AN12/RB12

AN13/RB13

AN14/RB14

FIGURE 1-1: dsPIC30F5011 BLOCK DIAGRAM
Y Data Bus
X Data Bus
@ @ T @6 @6
Interrupt Data Latch| |Data Latch
Controller %BSY 8ATabIe Y Data X Data
4 anatrochclgglf i 16 RAM RAM
(2 Kbytes)| | (2 Kbytes)]
Address Address | [6 ™
24 Latch Latch I~
16 ||
<}F |
pou PcH| Py | || [YACY D
Program Counter |]
Stack Loo
Address Latch Control | C ont?ol <]
I;Arogram Logic Logic il
emo
(66 Kbygs) pid
Data EEPROM >
(1 Kbyte) Effective Address -
Data Latch 16 NN .
-
| ROM Latchi— 6 PORTB
24
IR I i —
16 ! 6 "=
v 16x16
||
Decodel_ ™ W Reg Array
Instruction PORTC
Decode & K 64116
Control
|
Control Signals* * * * * DSP Divide
to Various Blocks Power-up Engine Unit I~
Timer
Timing Oscillator —
OSC1/CLKI Generation [<— Start-up Timer
POR/BOR ALU<16>
MCLR Watchdog 16 16 i
Timer -
XF—{ |Low-Voltage PORTD
VDD, Vss Detect =
AVDD, AVss
Input Output
CAN1
CAN2 12-bit ADC Capture Compare [2cm™
Module Module I~
||
I i i i h -~
4 I U ¥ -
||
|
. SPI1, UART1,
Timers bel SPI2 UART2
PORTF
-
||
||
|
—] |
||
-
||
[~
PORTG

AN15/0CFB/CN12/RB15

T2CK/RC1

T3CK/RC2
EMUD1/SOSCI/T4CK/CN1/RC13
EMUC1/SOSCO/T1CK/CNO/RC14
OSC2/CLKO/RC15

EMUC2/0C1/RDO
EMUD2/0OC2/RD1
OC3/RD2

OC4/RD3
OC5/IC5/CN13/RD4
0OC6/IC6/CN14/RD5
OC7/CN15/RD6
OCB8/CN16/RD7
IC1/INT1/RD8
IC2/INT2/RD9
IC3/INT3/RD10
IC4/INT4/RD11

C1RX/RF0

C1TX/RF1
U1RX/SDI1/RF2
EMUD3/U1TX/SDO1/RF3
U2RX/CN17/RF4
U2TX/CN18/RF5
EMUC3/SCK1/INTO/RF6

C2RX/RGO
C2TX/RG1
SCLIRG2
SDA/RG3
SCK2/CN8/RG6
SDI2/CNO/RG7
SDO2/CN10/RGS8
SS2/CN11/RGY
CSDIRG12
CSDO/RG13
CSCK/IRG14
COFS/IRG15

DS70116J-page 10

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

FIGURE 1-2: dsPIC30F5013 BLOCK DIAGRAM

CN22/RA6
CN23/RA7
VREF-/RA9
VREF+/RA10
INT1/RA12
INT2/RA13
INT3/RA14
INT4/RA15

Y Data Bus

X Data Bus

I & o 1o e de

Data Latch| |Data Latch
Interrupt PSV & Table ata Latc ata Latc

Controller <:§ Data Access | |fo Y Data XR?Aata

RAM M
IControl Block (2 Kbytes) (2 Kbytes) SORTA
fi6
Address Address
24 Latch Latch

16
<:F

PGD/EMUD/ANO/CN2/RBO
PGC/EMUC/AN1/CN3/RB1
AN2/SS1/LVDIN/CN4/RB2
ANB3/CN5/RB3
AN4/CN6/RB4
AN5/CN7/RB5
ANG/OCFA/RB6

AN7/RB7

AN8/RB8

AN9/RB9

X| AN10/RB10

AN11/RB11

AN12/RB12

AN13/RB13

AN14/RB14
AN15/0CFB/CN12/RB15

BCU| PCH| PCL Y AGU

Program Counter
Stack Loo|
Address Latch Control ConthoI
Program Memory Logic Logic —
(66 Kbytes)

Data EEPROM
(1 Kbyte) Effective Address
Data Latch 16 JANAY

| ROM Latch — 6
24 PORTB

T2CK/RC1

R ¥ i — T3CK/RC2

5 N T4CKIRC3

16 U v <[] T5CK/IRCA
w

16x 16 EMUD1/SOSCI/CN1/RC13

Decode| |l Reg Array EMUC1/SOSCO/T1CK/CNO/RC14
@ @ OSC2/CLKO/RC15
64116

Instruction
Decode &
Control

PORTC

AN

EMUC2/0C1/RDO
EMUD2/0C2/RD1
OC3/RD2
OC4/RD3
OC5/CN13/RD4
OC6/CN14/RD5
OC7/CN15/RD6
OCB8/CN16/RD7
IC1/RD8

> IC2/RD9
IC3/RD10

X IC4/RD11
IC5/RD12
IC6/CN19/RD13
IC7/CN20/RD14
IC8/CN21/RD15

Control Signals * * * * * DSP
to Various Blocks Power-up
Timer

Timing Oscillator 2
OSCH/CLKI | e K= Koo homer] \Vi F
< ALU<16>

POR/BOR

! Divide
Engine Unit

MCLR Watchdog 16 16
Timer -

X1 | Low-Voitage

VDD, Vss Detect =)

AVDD, AVss PORTD

C1RX/RF0O
C1TX/RF1
U1RX/RF2

||
[
L= UITX/RF3
||
[
[
||

Input Output
CAN1

CAN2 12-bit ADC Capture Compare [2c™
Module Module

it it it it
v U ¥ v

, SPI1, UARTA,
Timers be SPI2 UART2

U2RX/CN17/RF4
U2TX/CN18/RF5
EMUCS3/SCK1/INTO/RF6
SDI/RF7
EMUD3/SDO1/RF8

PORTF

C2RX/RGO
C2TX/RG1
SCL/RG2
SDA/RG3
SCK2/CN8/RG6

-
|
ka
<]
<>
<>PX]| SDI2/CN9/RG7
|
|
S
e
e
e

SDO2/CN10/RG8
SS2/CN11/RG9
CSDIRG12
CSDO/RG13
CSCKIRG14
COFS/RG15

PORTG

© 2011 Microchip Technology Inc. DS70116J-page 11

dsPIC30F5011/5013

Table 1-1 provides a brief description of device I/0 pin-
outs and the functions that may be multiplexed to a port
pin. Multiple functions may exist on one port pin. When
multiplexing occurs, the peripheral module’s functional
requirements may force an override of the data
direction of the port pin.

TABLE 1-1: PINOUT 1/0O DESCRIPTIONS
Pin Name Pin Buffer Description
Type Type

ANO-AN15 | Analog |Analog input channels.
ANO and AN1 are also used for device programming data and clock inputs,
respectively.

AVDD P P Positive supply for analog module. This pin must be connected at all times.

AVss P P Ground reference for analog module. This pin must be connected at all times.

CLKI I ST/CMOS |External clock source input. Always associated with OSC1 pin function.

CLKO 0] — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
mode. Optionally functions as CLKO in RC and EC modes. Always associated
with OSC2 pin function.

CNO-CN23 I ST Input change notification inputs.
Can be software programmed for internal weak pull-ups on all inputs.

COFS 1/0 ST Data Converter Interface Frame Synchronization pin.

CSCK I/0 ST Data Converter Interface Serial Clock input/output pin.

CSDI I ST Data Converter Interface Serial data input pin.

CSDO 0] — Data Converter Interface Serial data output pin.

C1RX I ST CAN1 Bus Receive pin.

C1TX 0] — CAN1 Bus Transmit pin.

C2RX I ST CAN2 Bus Receive pin.

C2TX (0] — CAN2 Bus Transmit pin

EMUD I/0 ST ICD Primary Communication Channel data input/output pin.

EMUC I/0 ST ICD Primary Communication Channel clock input/output pin.

EMUD1 1/0 ST ICD Secondary Communication Channel data input/output pin.

EMUC1 1/0 ST ICD Secondary Communication Channel clock input/output pin.

EMUD2 1/0 ST ICD Tertiary Communication Channel data input/output pin.

EMUC2 I/0 ST ICD Tertiary Communication Channel clock input/output pin.

EMUD3 I/0 ST ICD Quaternary Communication Channel data input/output pin.

EMUC3 I/0 ST ICD Quaternary Communication Channel clock input/output pin.

IC1-IC8 | ST Capture inputs 1 through 8.

INTO I ST External interrupt 0.

INT1 I ST External interrupt 1.

INT2 I ST External interrupt 2.

INT3 I ST External interrupt 3.

INT4 I ST External interrupt 4.

LVDIN I Analog |Low-Voltage Detect Reference Voltage input pin.

MCLR /P ST Master Clear (Reset) input or programming voltage input. This pin is an active
low Reset to the device.

OCFA I ST Compare Fault A input (for Compare channels 1, 2, 3 and 4).

OCFB I ST Compare Fault B input (for Compare channels 5, 6, 7 and 8).

0OC1-0C8 0] — Compare outputs 1 through 8.

Legend: CMOS = CMOS compatible input or output
Schmitt Trigger input with CMOS levels

ST
|

= Input

Analog = Analog input
(0] = Output
P = Power

DS70116J-page 12

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

TABLE 1-1: PINOUT 1/0 DESCRIPTIONS (CONTINUED)
Pin Name Pin Buffer Description
Type Type

OSCH1 I ST/CMOS |Oscillator crystal input. ST buffer when configured in RC mode;
CMOS otherwise.

0SsC2 I/O — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
mode. Optionally functions as CLKO in RC and EC modes.

PGD I/0 ST In-Circuit Serial Programming™ data input/output pin.

PGC I ST In-Circuit Serial Programming clock input pin.

RAG-RA7 1/0 ST PORTA is a bidirectional I/O port.

RA9-RA10 I/0 ST

RA12-RA15 I/O ST

RB0-RB15 I/0 ST PORTB is a bidirectional I/O port.

RC1-RC4 1/0 ST PORTC is a bidirectional 1/0O port.

RC13-RC15 I/0 ST

RDO0-RD15 1/0 ST PORTD is a bidirectional 1/0O port.

RFO0-RF8 I/0 ST PORTF is a bidirectional 1/0 port.

RGO-RG3 I/0 ST PORTG is a bidirectional I/0 port.

RG6-RG9 I/0 ST

RG12-RG15 I/0 ST

SCK1 1/0 ST Synchronous serial clock input/output for SPI1.

SDI1 I ST SPI1 Data In.

SDO1 o — SPI1 Data Out.

SS1 I ST SPI1 Slave Synchronization.

SCK2 1/0 ST Synchronous serial clock input/output for SPI2.

SDI2 I ST SPI2 Data In.

SDO2 o — SPI2 Data Out.

SS2 I ST SPI2 Slave Synchronization.

SCL 1/0 ST Synchronous serial clock input/output for 12cm™.

SDA 1/0 ST Synchronous serial data input/output for 12C.

SOSCO (0] — 32 kHz low-power oscillator crystal output.

SOSCI I ST/CMOS |32 kHz low-power oscillator crystal input. ST buffer when
configured in RC mode; CMOS otherwise.

T1CK I ST Timer1 external clock input.

T2CK I ST Timer2 external clock input.

T3CK I ST Timer3 external clock input.

T4CK I ST Timer4 external clock input.

T5CK I ST Timer5 external clock input.

U1RX I ST UART1 Receive.

U1TX (0] — UART1 Transmit.

U1ARX I ST UART1 Alternate Receive.

U1ATX (0] — UART1 Alternate Transmit.

U2RX I ST UART2 Receive.

u2TXx 0] — UART2 Transmit.

VDD P — Positive supply for logic and 1/O pins.

Vss P — Ground reference for logic and 1/O pins.

VREF+ I Analog |Analog Voltage Reference (High) input.

VREF- I Analog [Analog Voltage Reference (Low) input.

Legend: CMOS = CMOS compatible input or output Analog = Analog input

ST
|

= Schmitt Trigger input with CMOS levels 0]

= Input

= Output
P = Power

© 2011 Microchip Technology Inc.

DS70116J-page 13

dsPIC30F5011/5013

NOTES:

DS70116J-page 14 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

2.0 CPUARCHITECTURE
OVERVIEW

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”

(DS70157).

21 Core Overview

This section contains a brief overview of the CPU
architecture of the dsPIC30F. For additional hard-
ware and programming information, please refer to
the “dsPIC30F Family Reference Manual’ (DS70046)
and the “16-bit MCU and DSC Programmer’s
Reference Manual’ (DS70157), respectively.

The core has a 24-bit instruction word. The Program
Counter (PC) is 23 bits wide with the Least Significant
bit (LSb) always clear (refer to Section 3.1 “Program
Address Space”), and the Most Significant bit (MSb)
is ignored during normal program execution, except for
certain specialized instructions. Thus, the PC can
address up to 4M instruction words of user program
space. An instruction prefetch mechanism is used to
help maintain throughput. Program loop constructs,
free from loop count management overhead, are sup-
ported using the DO and REPEAT instructions, both of
which are interruptible at any point.

The working register array consists of 16 x 16-bit regis-
ters, each of which can act as data, address or offset
registers. One working register (W15) operates as a
software Stack Pointer for interrupts and calls.

The data space is 64 Kbytes (32K words) and is split
into two blocks, referred to as X and Y data memory.
Each block has its own independent Address Genera-
tion Unit (AGU). Most instructions operate solely
through the X memory, AGU, which provides the
appearance of a single unified data space. The
Multiply-Accumulate (MAC) class of dual source DSP
instructions operate through both the X and Y AGUs,
splitting the data address space into two parts (see
Section 3.2 “Data Address Space”). The X and Y
data space boundary is device specific and cannot be
altered by the user. Each data word consists of 2 bytes,
and most instructions can address data either as words
or bytes.

There are two methods of accessing data stored in
program memory:

» The upper 32 Kbytes of data space memory can
be mapped into the lower half (user space) of pro-
gram space at any 16K program word boundary,
defined by the 8-bit Program Space Visibility
Page (PSVPAG) register. This lets any instruction
access program space as if it were data space,
with a limitation that the access requires an addi-
tional cycle. Moreover, only the lower 16 bits of
each instruction word can be accessed using this
method.

 Linear indirect access of 32K word pages within
program space is also possible using any working
register, via table read and write instructions.
Table read and write instructions can be used to
access all 24 bits of an instruction word.

Overhead-free circular buffers (modulo addressing) are
supported in both X and Y address spaces. This is
primarily intended to remove the loop overhead for
DSP algorithms.

The X AGU also supports bit-reversed addressing on
destination effective addresses to greatly simplify input
or output data reordering for radix-2 FFT algorithms.
Refer to Section 5.0 “Address Generator Units” for
details on modulo and bit-reversed addressing.

The core supports Inherent (no operand), Relative,
Literal, Memory Direct, Register Direct, Register
Indirect, Register Offset and Literal Offset Addressing
modes. Instructions are associated with predefined
Addressing modes, depending upon their functional
requirements.

For most instructions, the core is capable of executing
a data (or program data) memory read, a working reg-
ister (data) read, a data memory write and a program
(instruction) memory read per instruction cycle. As a
result, 3-operand instructions are supported, allowing
C = A + B operations to be executed in a single cycle.

A DSP engine has been included to significantly
enhance the core arithmetic capability and throughput.
It features a high-speed 17-bit by 17-bit multiplier, a
40-bit ALU, two 40-bit saturating accumulators and a
40-bit bidirectional barrel shifter. Data in the accumula-
tor or any working register can be shifted up to 15 bits
right, or 16 bits left in a single cycle. The DSP instruc-
tions operate seamlessly with all other instructions and
have been designed for optimal real-time performance.
The MAC class of instructions can concurrently fetch
two data operands from memory while multiplying two
W registers. To enable this concurrent fetching of data
operands, the data space has been split for these
instructions and linear for all others. This has been
achieved in a transparent and flexible manner, by ded-
icating certain working registers to each address space
for the MAC class of instructions.

© 2011 Microchip Technology Inc.

DS70116J-page 15

dsPIC30F5011/5013

The core does not support a multi-stage instruction
pipeline. However, a single stage instruction prefetch
mechanism is used, which accesses and partially
decodes instructions a cycle ahead of execution, in
order to maximize available execution time. Most
instructions execute in a single cycle with certain
exceptions.

The core features a vectored exception processing
structure for traps and interrupts, with 62 independent
vectors. The exceptions consist of up to 8 traps (of
which 4 are reserved) and 54 interrupts. Each interrupt
is prioritized based on a user assigned priority between
1 and 7 (1 being the lowest priority and 7 being the
highest), in conjunction with a predetermined ‘natural
order’. Traps have fixed priorities ranging from 8 to 15.

2.2 Programmer’s Model

The programmer’s model is shown in Figure 2-1 and
consists of 16 x 16-bit working registers (WO through
W15), 2 x 40-bit accumulators (AccA and AccB),
STATUS register (SR), Data Table Page register
(TBLPAG), Program Space Visibility Page register
(PSVPAG), DO and REPEAT registers (DOSTART,
DOEND, DCOUNT and RCOUNT) and Program Coun-
ter (PC). The working registers can act as data,
address or offset registers. All registers are memory
mapped. WO acts as the W register for file register
addressing.

Some of these registers have a shadow register asso-
ciated with each of them, as shown in Figure 2-1. The
shadow register is used as a temporary holding register
and can transfer its contents to or from its host register
upon the occurrence of an event. None of the shadow
registers are accessible directly. The following rules
apply for transfer of registers into and out of shadows.

* PUSH.S and POP.S
WO0, W1, W2, W3, SR (DC, N, OV, Z and C bits
only) are transferred.

* DO instruction
DOSTART, DOEND, DCOUNT shadows are
pushed on loop start, and popped on loop end.

When a byte operation is performed on a working reg-
ister, only the Least Significant Byte (LSB) of the target
register is affected. However, a benefit of memory
mapped working registers is that both the Least and
Most Significant Bytes (MSBs) can be manipulated
through byte wide data memory space accesses.

2.21 SOFTWARE STACK POINTER/
FRAME POINTER

The dsPIC® DSC devices contain a software stack.
W15 is the dedicated software Stack Pointer (SP), and
will be automatically modified by exception processing
and subroutine calls and returns. However, W15 can be
referenced by any instruction in the same manner as all
other W registers. This simplifies the reading, writing
and manipulation of the Stack Pointer (e.g., creating
stack frames).

Note: In order to protect against misaligned
stack accesses, W15<0> is always clear.

W15 is initialized to 0x0800 during a Reset. The user
may reprogram the SP during initialization to any
location within data space.

W14 has been dedicated as a Stack Frame Pointer as
defined by the LNK and ULNK instructions. However,
W14 can be referenced by any instruction in the same
manner as all other W registers.

222 STATUS REGISTER

The dsPIC DSC core has a 16-bit STATUS register
(SR), the LSB of which is referred to as the SR Low
byte (SRL) and the MSB as the SR High byte (SRH).
See Figure 2-1 for SR layout.

SRL contains all the MCU ALU operation status flags
(including the Z bit), as well as the CPU Interrupt Prior-
ity Level status bits, IPL<2:0> and the Repeat Active
Status bit, RA. During exception processing, SRL is
concatenated with the MSB of the PC to form a com-
plete word value which is then stacked.

The upper byte of the STATUS register contains the
DSP Adder/Subtracter status bits, the DO Loop Active
bit (DA) and the Digit Carry (DC) Status bit.

223 PROGRAM COUNTER

The program counter is 23 bits wide; bit 0 is always
clear. Therefore, the PC can address up to 4M
instruction words.

DS70116J-page 16

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

FIGURE 2-1: PROGRAMMER’S MODEL
D15 DO
WOWREG A e . !
| - PUSH.S Shadow
W1
W2 | I:l DO Shadow |
Lo J
w3 Legend
—
W4
DSP Operand W5
i =<
Registers W6
W7
— Working Registers
T y wonn e
W9
DSP Address b
Registers W10
_ W11
W12/DSP Offset
W13/DSP Write Back
W14/Frame Pointer
W15/Stack Pointer /
SPLIM Stack Pointer Limit Register
AD39 AD31 AD15 ADO
DSP AccA
Accumulators AccB
PC22 PCO
| ‘ 0 ‘ Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
15
| RCOUNT | REPEAT Loop Counter
15
| DCOUNT n DO Loop Counter
22
| DOSTART ﬂ DO Loop Start Address
22
| DOEND n DO Loop End Address
!
15
| CORCON | Core Configuration Register

-l

|oa |oB | sA | sB |oAB|sAB| DA WIPLZ‘ IPL1|IPLO| RA[N [ov] Zz | ¢ STATUS Register

- SRH

SRL

-
-~

© 2011 Microchip Technology Inc.

DS70116J-page 17

dsPIC30F5011/5013

2.3 Divide Support

The dsPIC DSC devices feature a 16/16-bit signed
fractional divide operation, as well as 32/16-bit and 16/
16-bit signed and unsigned integer divide operations, in
the form of single instruction iterative divides. The
following instructions and data sizes are supported:

* DIVF - 16/16 signed fractional divide
* DIV.sd - 32/16 signed divide

* DIV.ud - 32/16 unsigned divide

* DIV.sw - 16/16 signed divide

* DIV.uw - 16/16 unsigned divide

The 16/16 divides are similar to the 32/16 (same number
of iterations), but the dividend is either zero-extended or
sign-extended during the first iteration.

The divide instructions must be executed within a
REPEAT loop. Any other form of execution (e.g., a
series of discrete divide instructions) will not function
correctly because the instruction flow depends on
RCOUNT. The divide instruction does not automatically
set up the RCOUNT value and it must, therefore, be
explicitly and correctly specified in the REPEAT instruc-
tion as shown in Table 2-2 (REPEAT will execute the tar-
get instruction {operand value+1} times). The REPEAT
loop count must be setup for 18 iterations of the DIV/
DIVF instruction. Thus, a complete divide operation
requires 19 cycles.

Note: The divide flow is interruptible. However,
the user needs to save the context as

24 DSP Engine

The DSP engine consists of a high-speed 17-bit x
17-bit multiplier, a barrel shifter and a 40-bit adder/
subtracter (with two target accumulators, round and
saturation logic).

The DSP engine also has the capability to perform
inherent accumulator-to-accumulator operations,
which require no additional data. These instructions are
ADD, SUB and NEG.

The dsPIC30F is a single-cycle instruction flow archi-
tecture; therefore, concurrent operation of the DSP
engine with MCU instruction flow is not possible.
However, some MCU ALU and DSP engine resources
may be used concurrently by the same instruction (e.g.,
ED, EDAC).

The DSP engine has various options selected through
various bits in the CPU Core Configuration register
(CORCON), as listed below:

» Fractional or integer DSP multiply (IF)

 Signed or unsigned DSP multiply (US)

» Conventional or convergent rounding (RND)

» Automatic saturation on/off for AccA (SATA)

» Automatic saturation on/off for AccB (SATB)

« Automatic saturation on/off for writes to data
memory (SATDW)

* Accumulator Saturation mode selection
(ACCSAT)

. | Note: For CORCON layout, see Table 3-3. I
appropriate.
A block diagram of the DSP engine is shown in
Figure 2-2.
TABLE 2-1: DSP INSTRUCTION
SUMMARY
Instruction 3:3;2:?(: ACC WB?
CLR A=0 Yes
ED A=(x-y? No
EDAC A=A+ (x—y)? No
MAC A=A+ (x*y) Yes
MAC A=A+x° No
MOVSAC No change in A Yes
MPY A=x*y No
MPY.N A=—-x*y No
MSC A=A4A-x*y Yes
TABLE 2-2: DIVIDE INSTRUCTIONS
Instruction Function

DIVF Signed fractional divide: Wm/Wn —-W0; Rem —W1

DIV.sd Signed divide: (Wm+1:Wm)/Wn —WO0; Rem —W1

DIV.sworDIV.s |Signed divide: Wm/Wn —-WO0; Rem —W1

DIV.ud Unsigned divide: (Wm+1:Wm)/Wn —-WO0; Rem —W1

DIV.uwor DIV.u |Unsigned divide: Wm/Wn —-WO0; Rem —W1

DS70116J-page 18

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

FIGURE 2-2:

DSP ENGINE BLOCK DIAGRAM

Y Data Bus

40

40-bit Accumulator A

v

A A

40-bit Accumulator B

\ L
Carry/Borrow Out

Carry/Borrow In

Saturate

Adder

A Negate

!

YYVY

4& Round

40 40

Be

40

Barrel
Shifter

Sign-Extend

A

[\

Logic

\
Q#Nﬂ;ﬁmm

16

32

X Data Bus

32

33

17-bit
Multiplier/Scaler

A
16 16

Zero Backfill

16

To/From W Array

q

|——

© 2011 Microchip Technology Inc.

DS70116J-page 19

dsPIC30F5011/5013

2.41 MULTIPLIER

The 17 x 17-bit multiplier is capable of signed or
unsigned operation and can multiplex its output using a
scaler to support either 1.31 fractional (Q31) or 32-bit
integer results. Unsigned operands are zero-extended
into the 17th bit of the multiplier input value. Signed
operands are sign-extended into the 17th bit of the mul-
tiplier input value. The output of the 17 x 17-bit multi-
plier/scaler is a 33-bit value which is sign-extended to
40 bits. Integer data is inherently represented as a
signed two’s complement value, where the MSB is
defined as a sign bit. Generally speaking, the range of
an N-bit two’s complement integer is -2V to 2N — 1.
For a 16-bit integer, the data range is -32768 (0x8000)
to 32767 (0x7FFF) including ‘0’. For a 32-bit integer,
the data range is -2,147,483,648 (0x8000 0000) to
2,147,483,645 (Ox7FFF FFFF).

When the multiplier is configured for fractional multipli-
cation, the data is represented as a two’s complement
fraction, where the MSB is defined as a sign bit and the
radix point is implied to lie just after the sign bit (QX for-
mat). The range of an N-bit two’s complement fraction
with this implied radix point is -1.0 to (1 — 2!'N). For a
16-bit fraction, the Q15 data range is -1.0 (0x8000) to
0.999969482 (0x7FFF) including ‘0’ and has a preci-
sion of 3.01518x107. In Fractional mode, the 16x16
multiply operation generates a 1.31 product which has
a precision of 4.65661 x 10710,

The same multiplier is used to support the MCU multi-
ply instructions which include integer 16-bit signed,
unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or
word sized operands. Byte operands will direct a 16-bit
result, and word operands will direct a 32-bit result to
the specified register(s) in the W array.

242 DATA ACCUMULATORS AND
ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/
subtracter with automatic sign extension logic. It can
select one of two accumulators (A or B) as its pre-
accumulation source and post-accumulation destina-
tion. For the ADD and LAC instructions, the data to be
accumulated or loaded can be optionally scaled via the
barrel shifter, prior to accumulation.

2.4.21 Adder/Subtracter, Overflow and
Saturation

The adder/subtracter is a 40-bit adder with an optional
zero input into one side and either true, or complement
data into the other input. In the case of addition, the
carry/borrow input is active high and the other input is
true data (not complemented), whereas in the case of
subtraction, the carry/borrow input is active low and the
other input is complemented. The adder/subtracter
generates overflow status bits SA/SB and OA/OB,
which are latched and reflected in the STATUS
register:

» Overflow from bit 39: this is a catastrophic
overflow in which the sign of the accumulator is
destroyed.

» Overflow into guard bits 32 through 39: this is a
recoverable overflow. This bit is set whenever all
the guard bits are not identical to each other.

The adder has an additional saturation block which
controls accumulator data saturation, if selected. It
uses the result of the adder, the overflow status bits
described above, and the SATA/B (CORCON<7:6>)
and ACCSAT (CORCON<4>) mode control bits to
determine when and to what value to saturate.

Six STATUS register bits have been provided to
support saturation and overflow; they are:

* OA: AccA overflowed into guard bits
» OB: AccB overflowed into guard bits

» SA: AccA saturated (bit 31 overflow and
saturation)
or
AccA overflowed into guard bits and saturated (bit
39 overflow and saturation)

» SB: AccB saturated (bit 31 overflow and satura-
tion)
or
AccB overflowed into guard bits and saturated (bit
39 overflow and saturation)

» OAB: Logical OR of OA and OB
» SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data
passes through the adder/subtracter. When set, they
indicate that the most recent operation has overflowed
into the accumulator guard bits (bits 32 through 39).
The OA and OB bits can also optionally generate an
arithmetic warning trap when set and the correspond-
ing overflow trap flag enable bit (OVATE, OVBTE) in
the INTCON1 register (refer to Section 4.0 “Inter-
rupts”) is set. This allows the user to take immediate
action, for example, to correct system gain.

DS70116J-page 20

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

The SA and SB bits are modified each time data
passes through the adder/subtracter but can only be
cleared by the user. When set, they indicate that the
accumulator has overflowed its maximum range (bit 31
for 32-bit saturation, or bit 39 for 40-bit saturation) and
will be saturated (if saturation is enabled). When satu-
ration is not enabled, SA and SB default to bit 39 over-
flow and thus indicate that a catastrophic overflow has
occurred. If the COVTE bit in the INTCON1 register is
set, SA and SB bits will generate an arithmetic warning
trap when saturation is disabled.

The overflow and saturation status bits can optionally
be viewed in the STATUS register (SR) as the logical
OR of OA and OB (in bit OAB) and the logical OR of SA
and SB (in bit SAB). This allows programmers to check
one bit in the STATUS register to determine if either
accumulator has overflowed, or one bit to determine if
either accumulator has saturated. This would be useful
for complex number arithmetic which typically uses
both the accumulators.

The device supports three Saturation and Overflow
modes:

» Bit 39 Overflow and Saturation:
When bit 39 overflow and saturation occurs, the
saturation logic loads the maximally positive 9.31
(Ox7FFFFFFFFF), or maximally negative 9.31
value (0x8000000000) into the target accumulator.
The SA or SB bit is set and remains set until
cleared by the user. This is referred to as ‘super
saturation’ and provides protection against errone-
ous data, or unexpected algorithm problems (e.g.,
gain calculations).

» Bit 31 Overflow and Saturation:
When bit 31 overflow and saturation occurs, the
saturation logic then loads the maximally positive
1.31 value (0x007FFFFFFF), or maximally nega-
tive 1.31 value (0x0080000000) into the target
accumulator. The SA or SB bit is set and remains
set until cleared by the user. When this Saturation
mode is in effect, the guard bits are not used (so
the OA, OB or OAB bits are never set).

« Bit 39 Catastrophic Overflow:
The bit 39 overflow Status bit from the adder is
used to set the SA or SB bit which remain set until
cleared by the user. No saturation operation is
performed and the accumulator is allowed to
overflow (destroying its sign). If the COVTE bit in
the INTCONT1 register is set, a catastrophic over-
flow can initiate a trap exception.

2.4.2.2 Accumulator ‘Write Back’

The MAC class of instructions (with the exception of
MPY, MPY.N, ED and EDAC) can optionally write a
rounded version of the high word (bits 31 through 16)
of the accumulator that is not targeted by the instruction
into data space memory. The write is performed across
the X bus into combined X and Y address space. The
following Addressing modes are supported:

* W13, Register Direct:
The rounded contents of the non-target
accumulator are written into W13 as a 1.15
fraction.

* [W13]+=2, Register Indirect with Post-Increment:
The rounded contents of the non-target accumu-
lator are written into the address pointed to by
W13 as a 1.15 fraction. W13 is then incremented
by 2 (for a word write).

2423 Round Logic

The round logic is a combinational block which per-
forms a conventional (biased) or convergent (unbi-
ased) round function during an accumulator write
(store). The Round mode is determined by the state of
the RND bit in the CORCON register. It generates a 16-
bit, 1.15 data value which is passed to the data space
write saturation logic. If rounding is not indicated by the
instruction, a truncated 1.15 data value is stored and
the least significant word (Isw) is simply discarded.

Conventional rounding takes bit 15 of the accumulator,
zero-extends it and adds it to the ACCxH word (bits 16
through 31 of the accumulator). If the ACCxL word
(bits 0 through 15 of the accumulator) is between
0x8000 and OxFFFF (0x8000 included), ACCxH is
incremented. If ACCxL is between 0x0000 and Ox7FFF,
ACCxH is left unchanged. A consequence of this algo-
rithm is that over a succession of random rounding
operations, the value will tend to be biased slightly
positive.

Convergent (or unbiased) rounding operates in the
same manner as conventional rounding, except when
ACCxL equals 0x8000. If this is the case, the LSb
(bit 16 of the accumulator) of ACCxH is examined. If it
is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not
modified. Assuming that bit 16 is effectively random in
nature, this scheme will remove any rounding bias that
may accumulate.

The sac and SAC.R instructions store either a trun-
cated (SAC) or rounded (SAC. R) version of the contents
of the target accumulator to data memory via the X bus
(subject to data saturation, see Section 2.4.2.4 “Data
Space Write Saturation”). Note that for the MAC class
of instructions, the accumulator write back operation
will function in the same manner, addressing combined
MCU (X and Y) data space though the X bus. For this
class of instructions, the data is always subject to
rounding.

© 2011 Microchip Technology Inc.

DS70116J-page 21

dsPIC30F5011/5013

2424 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data
space may also be saturated but without affecting the
contents of the source accumulator. The data space
write saturation logic block accepts a 16-bit, 1.15 frac-
tional value from the round logic block as its input,
together with overflow status from the original source
(accumulator) and the 16-bit round adder. These are
combined and used to select the appropriate 1.15
fractional value as output to write to data space
memory.

If the SATDW bit in the CORCON register is set, data
(after rounding or truncation) is tested for overflow and
adjusted accordingly, For input data greater than
0x007FFF, data written to memory is forced to the max-
imum positive 1.15 value, Ox7FFF. For input data less
than OxFF8000, data written to memory is forced to the
maximum negative 1.15 value, 0x8000. The MSb of the
source (bit 39) is used to determine the sign of the
operand being tested.

If the SATDW bit in the CORCON register is not set, the
input data is always passed through unmodified under
all conditions.

243 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit
arithmetic or logic right shifts, or up to 16-bit left shifts
in a single cycle. The source can be either of the two
DSP accumulators, or the X bus (to support multi-bit
shifts of register or memory data).

The shifter requires a signed binary value to determine
both the magnitude (number of bits) and direction of the
shift operation. A positive value will shift the operand
right. A negative value will shift the operand left. A
value of ‘0’ will not modify the operand.

The barrel shifter is 40-bits wide, thereby obtaining a
40-bit result for DSP shift operations and a 16-bit result
for MCU shift operations. Data from the X bus is pre-
sented to the barrel shifter between bit positions 16 to
31 for right shifts, and bit positions 0 to 16 for left shifts.

DS70116J-page 22

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

3.0 MEMORY ORGANIZATION

This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”

Note:

(DS70157).

31 Program Address Space

The program address space is 4M instruction words. It
is addressable by a 24-bit value from either the 23-bit
PC, table instruction Effective Address (EA), or data
space EA, when program space is mapped into data
space as defined by Table 3-1. Note that the program
space address is incremented by two between succes-
sive program words in order to provide compatibility
with data space addressing.

User program space access is restricted to the lower
4M instruction word address range (0x000000 to
Ox7FFFFE) for all accesses other than TBLRD/TBLWT,
which use TBLPAG<7> to determine user or configura-
tion space access. In Table 3-1, Program Space
Address Construction, bit 23 allows access to the
Device ID, the User ID and the Configuration bits.
Otherwise, bit 23 is always clear.

FIGURE 3-1: PROGRAM SPACE
MEMORY MAP
A Reset - GOTO Instruction 000000
Reset - Target Address 000002
000004 A
Vector(Tables
Interrupt Vector Table
00007E
o Reserved 000080 Y
o Alternate Vector Table 000084
€9 0000FE
% S User Flash 000100
o @ Program Memory
=} (22K instructions)
00AFFE
00B000
Reserved
(Read ‘0’s)
7FFBFE
Data EEPROM 7TFFC00
Y (1 Kbyte)
S 7FFFFE
A 800000
Reserved
fal
o
£
Q
= 8005BE
58 8005C0
58 UNITID (32 instr.)
5 8005FE
-,g’ 800600
8 Reserved
F7FFFE
Device Configuration F80000
Registers FS000E
F80010
Reserved
FEFFFE
y FF0000
L DEVID (2) FFFFFE

© 2011 Microchip Technology Inc.

DS70116J-page 23

dsPIC30F5011/5013

TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Program Space Address
Access Type
Space <23> <22:16> | <15> <14:1> <0>
Instruction Access User 0 PC<22:1> 0
TBLRD/TBLWT User TBLPAG<7:0> Data EA<15:0>
(TBLPAG<7> = 0)
TBLRD/TBLWT Configuration TBLPAG<7:0> Data EA<15:0>
(TBLPAG<7> = 1)
Program Space Visibility |User 0 PSVPAG<7:0> Data EA<14.0>
FIGURE 3-2: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
! ! 23 bits L
Using ! b N
Program [0 | Program Counter [0]
Counter | | I
I |]
Select
L [1]) EA
Using | Y
Program [0 | PSVPAG Reg | I
Space » o
Visivility | [T gt - 15 bits i' '
[| |
| !]
| | | EA ! |
Using |
Table 1/0 | TBLPAG Reg | |
Instruction = | 8bits o 16 bits ™
| | |
| |
User/ A ¢ A
Configuration | Byt
24-bit EA yte
Space | Select
Select

Note: Program space visibility cannot be used to access bits <23:16> of a word in program memory.

DS70116J-page 24 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

3.1.1 DATA ACCESS FROM PROGRAM
MEMORY USING TABLE

INSTRUCTIONS

This architecture fetches 24-bit wide program memory.
Consequently, instructions are always aligned.
However, as the architecture is modified Harvard, data
can also be present in program space.

There are two methods by which program space can
be accessed: via special table instructions, or through
the remapping of a 16K word program space page into
the upper half of data space (see Section 3.1.2 “Data
Access from Program Memory Using Program
Space Visibility”). The TBLRDL and TBLWTL instruc-
tions offer a direct method of reading or writing the least
significant word of any address within program space,
without going through data space. The TBLRDH and
TBLWTH instructions are the only method whereby the
upper 8 bits of a program space word can be accessed
as data.

The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two 16-bit
word wide address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space which contains the least significant
data word, and TBLRDH and TBLWTH access the space
which contains the Most Significant data Byte.

Figure 3-2 shows how the EA is created for table oper-
ations and data space accesses (PSV = 1). Here,
P<23:0> refers to a program space word, whereas
D<15:0> refers to a data space word.

A set of table instructions are provided to move byte or

word sized data to and from program space.

1.

TBLRDL: Table Read Low

Word: Read the Isw of the program address;
P<15:0> maps to D<15:0>.

Byte: Read one of the LSBs of the program
address;

P<7:0> maps to the destination byte when byte
select = 0;

P<15:8> maps to the destination byte when byte
select = 1.

TBLWTL: Table Write Low (refer to Section 6.0
“Flash Program Memory” for details on Flash
Programming)

TBLRDH: Table Read High

Word: Read the most significant word of the pro-
gram address; P<23:16> maps to D<7:0>;
D<15:8> will always be = 0.

Byte: Read one of the MSBs of the program
address;

P<23:16> maps to the destination byte when
byte select = 0;

The destination byte will always be = 0 when
byte select = 1.

TBLWTH: Table Write High (refer to Section 6.0
“Flash Program Memory” for details on Flash
Programming)

FIGURE 3-3: PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)
PC Address 23 16 8 0
0x000000 00000000
0x000002 00000000 /
0x000004 | 00000000 /
0x000006 00000000 /
/ TBLRDL.B (Wn<0> = 0)
Program Memory TBLRDL. W
(I:::dntgnsn?o?)ayte TBLRDL.B (Wn<0> = 1)

© 2011 Microchip Technology Inc. DS70116J-page 25

dsPIC30F5011/5013

FIGURE 3-4:

PROGRAM DATA TABLE ACCESS (MOST SIGNIFICANT BYTE)

PC Address 23

TBLRDH.W

16 8 0

0x000000 00000000

0x000002 00000000

0x000004 00000000
0x000006 0000R000

Program Memory
‘Phantom’ Byte
(read as ‘0’)

TBLRDH.B (Wn<0> = 1)

AN

TBLRDH.B (Wn<0> = 0)

3.1.2 DATA ACCESS FROM PROGRAM
MEMORY USING PROGRAM
SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be
mapped into any 16K word program space page. This
provides transparent access of stored constant data
from X data space without the need to use special
instructions (i.e., TBLRDL/H, TBLWTL/H instructions).

Program space access through the data space occurs
if the MSb of the data space EA is set and program
space visibility is enabled by setting the PSV bit in the
Core Control register (CORCON). The functions of
CORCON are discussed in Section2.4 “DSP
Engine”.

Data accesses to this area add an additional cycle to
the instruction being executed, since two program
memory fetches are required.

Note that the upper half of addressable data space is
always part of the X data space. Therefore, when a
DSP operation uses program space mapping to access
this memory region, Y data space should typically con-
tain state (variable) data for DSP operations, whereas
X data space should typically contain coefficient
(constant) data.

Although each data space address, 0x8000 and higher,
maps directly into a corresponding program memory
address (see Figure 3-5), only the lower 16 bits of the
24-bit program word are used to contain the data. The
upper 8 bits should be programmed to force an illegal
instruction to maintain machine robustness. Refer to
the “16-bit MCU and DSC Programmer’s Reference
Manual” (DS70157) for details on instruction encoding.

Note that by incrementing the PC by 2 for each
program memory word, the Least Significant 15 bits of
data space addresses directly map to the Least Signif-
icant 15 bits in the corresponding program space
addresses. The remaining bits are provided by the Pro-
gram Space Visibility Page register, PSVPAG<7:0>, as
shown in Figure 3-5.

Note: PSV access is temporarily disabled during
table reads/writes.

For instructions that use PSV which are executed
outside a REPEAT loop:

» The following instructions will require one
instruction cycle in addition to the specified
execution time:

- MAC class of instructions with data operand
prefetch

- MOV instructions

- MOV.D instructions

« All other instructions will require two instruction
cycles in addition to the specified execution time
of the instruction.

For instructions that use PSV which are executed
inside a REPEAT loop:

» The following instances will require two instruction
cycles in addition to the specified execution time
of the instruction:

- Execution in the first iteration

- Execution in the last iteration

- Execution prior to exiting the loop due to an
interrupt

- Execution upon re-entering the loop after an
interrupt is serviced

» Any other iteration of the REPEAT loop will allow
the instruction accessing data, using PSV, to
execute in a single cycle.

DS70116J-page 26

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

FIGURE 3-5: DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION
Data Space Program Space
0x0000 T 0x000100
|
15 PSVPAGH) |
EA<15>=10
0x01 |
8
|
gata 5 0x8000 |
X
= 15 23 5 0
EA<15> = 1 Address > | 0x008000
15 |Concatenation| 23" | X
|
Upper Half of Data |
Space is Mapped -«
into Program Space |
OXFFFF | 0x017FFF
BSET CORCON, #2 ; PSV bit set
MOV #0x01, WO ; Set PSVPAG register
MOV WO, PSVPAG
MOV 0x8000, WO ; Access program memory location
; using a data space access \
Data Read

Note: PSVPAG is an 8-bit register, containing bits <22:15> of the program space address (i.e., it defines
the page in program space to which the upper half of data space is being mapped).

© 2011 Microchip Technology Inc. DS70116J-page 27

dsPIC30F5011/5013

3.2

The core has two data spaces. The data spaces can be
considered either separate (for some DSP instruc-
tions), or as one unified linear address range (for MCU
instructions). The data spaces are accessed using two
Address Generation Units (AGUs) and separate data
paths.

Data Address Space

3.2.1 DATA SPACE MEMORY MAP

The data space memory is split into two blocks, X and
Y data space. A key element of this architecture is that
Y space is a subset of X space, and is fully contained
within X space. In order to provide an apparent linear
addressing space, X and Y spaces have contiguous
addresses.

When executing any instruction other than one of the
MAC class of instructions, the X block consists of the 64-
Kbyte data address space (including all Y addresses).
When executing one of the MAC class of instructions,
the X block consists of the 64 Kbyte data address
space excluding the Y address block (for data reads
only). In other words, all other instructions regard the
entire data memory as one composite address space.
The MAC class instructions extract the Y address space
from data space and address it using EAs sourced from
W10 and W11. The remaining X data space is
addressed using W8 and W9. Both address spaces are
concurrently accessed only with the MAC class
instructions.

The data space memory map is shown in Figure 3-6.
The X data space is used by all instructions and supports
all addressing modes, as shown in Figure 3-7.

FIGURE 3-6: DATA SPACE MEMORY MAP
MSB 16 bits LSB
Address
Address - MSB [SB -
— 0x0001 ' 0x0000
2Kbyte | SFR Space
SFR Space | OxO7FF | 0x07FE
— 0x0801 | 0x0800 8 Kbyt
X Data RAM (X) Noar
4 Kbyte OXOFFF : OXOFFE Data
SRAM Soace | X100 | 0x1000 Space
pace Y Data RAM (Y)
L_Ox17FF | 0x17FE
0x1801 | 0x1800
OXIFFF | _ _ _ _ 1 OX1FFE
|
|
|
______ | _— — —_ — — 4
0x8001 | 0x8000
|
|
|
|
Optionally X Data
Mapped Unimplemented (X)
into Program |
Memory |
|
|
|
|
OXFFFF | OxFFFE

DS70116J-page 28

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

FIGURE 3-7: DATA SPACE FOR MCU AND DSP (MAC CLASS) INSTRUCTIONS EXAMPLE
r— - — — — |
SFR SPACE | I SFR SPACE N
| I &)
UNUSED =
| | 7
| | >
________ | |
(Y SPACE) " Y SPACE | UNUSED |
(@]
< | |
o
———————— n
X
| |
| | "
| UNUSED | 2
| | %)
| | x
| |
- - . _I
Non-MAC Class Ops (Read/Write) MAC Class Ops (Read)

MAC Class Ops (Write)

Indirect EA using any W Indirect EA using W8, W9 Indirect EA using W10, W11

© 2011 Microchip Technology Inc. DS70116J-page 29

dsPIC30F5011/5013

3.2.2 DATA SPACES

X data space is used by all instructions and supports all
Addressing modes. There are separate read and write
data buses. The X read data bus is the return data path
for all instructions that view data space as combined X
and Y address space. It is also the X address space
data path for the dual operand read instructions (MAC
class). The X write data bus is the only write path to
data space for all instructions.

The X data space also supports modulo addressing for
all instructions, subject to Addressing mode restric-
tions. Bit-reversed addressing is only supported for
writes to X data space.

The Y data space is used in concert with the X data
space by the MAC class of instructions (CLR, ED,
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to
provide two concurrent data read paths. No writes
occur across the Y bus. This class of instructions dedi-
cates two W register pointers, W10 and W11, to always
address Y data space, independent of X data space,
whereas W8 and W9 always address X data space.
Note that during accumulator write back, the data
address space is considered a combination of X and Y
data spaces, so the write occurs across the X bus.
Consequently, the write can be to any address in the
entire data space.

The Y data space can only be used for the data
prefetch operation associated with the MAC class of
instructions. It also supports modulo addressing for
automated circular buffers. Of course, all other instruc-
tions can access the Y data address space through the
X data path as part of the composite linear space.

The boundary between the X and Y data spaces is
defined as shown in Figure 3-6 and is not user pro-
grammable. Should an EA point to data outside its own
assigned address space, or to a location outside phys-
ical memory, an all zero word/byte will be returned. For
example, although Y address space is visible by all
non-MAC instructions using any Addressing mode, an
attempt by a MAC instruction to fetch data from that
space using W8 or W9 (X space pointers) will return
0x0000.
TABLE 3-2: EFFECT OF INVALID
MEMORY ACCESSES

Attempted Operation

Data Returned

EA = an unimplemented address 0x0000
W8 or W9 used to access Y data 0x0000
space in a MAC instruction

W10 or W11 used to access X 0x0000

data space in a MAC instruction

All effective addresses are 16 bits wide and point to
bytes within the data space. Therefore, the data space
address range is 64 Kbytes or 32K words.

3.2.3 DATA SPACE WIDTH

The core data width is 16 bits. All internal registers are
organized as 16-bit wide words. Data space memory is
organized in byte addressable, 16-bit wide blocks.

3.24 DATA ALIGNMENT

To help maintain backward compatibility with PIC®
MCU devices and improve data space memory usage
efficiency, the dsPIC30F instruction set supports both
word and byte operations. Data is aligned in data mem-
ory and registers as words, but all data space EAs
resolve to bytes. Data byte reads will read the complete
word which contains the byte, using the LSb of any EA
to determine which byte to select. The selected byte is
placed onto the LSB of the X data path (no byte
accesses are possible from the Y data path as the MAC
class of instruction can only fetch words). That is, data
memory and registers are organized as two parallel
byte wide entities with shared (word) address decode
but separate write lines. Data byte writes only write to
the corresponding side of the array or register which
matches the byte address.

As a consequence of this byte accessibility, all effective
address calculations (including those generated by the
DSP operations which are restricted to word sized
data) are internally scaled to step through word aligned
memory. For example, the core would recognize that
Post-Modified Register Indirect Addressing mode
[Ws++] will result in a value of Ws+1 for byte operations
and Ws+2 for word operations.

All word accesses must be aligned to an even address.
Misaligned word data fetches are not supported so
care must be taken when mixing byte and word opera-
tions, or translating from 8-bit MCU code. Should a mis-
aligned read or write be attempted, an address error
trap will be generated. If the error occurred on a read,
the instruction underway is completed, whereas if it
occurred on a write, the instruction will be executed but
the write will not occur. In either case, a trap will then
be executed, allowing the system and/or user to exam-
ine the machine state prior to execution of the address
fault.

FIGURE 3-8: DATA ALIGNMENT
15 MSB g7 LSB 0
0001 Byte1 Byte 0 0000
0003 Byte3 Byte 2 0002
0005 Byte5 Byte 4 0004

DS70116J-page 30

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

All byte loads into any W register are loaded into the
LSB. The MSB is not modified.

A sign-extend (SE) instruction is provided to allow
users to translate 8-bit signed data to 16-bit signed
values. Alternatively, for 16-bit unsigned data, users
can clear the MSB of any W register by executing a
zero-extend (zE) instruction on the appropriate
address.

Although most instructions are capable of operating on
word or byte data sizes, it should be noted that some
instructions, including the DSP instructions, operate
only on words.

3.2.5 NEAR DATA SPACE

An 8 Kbyte ‘near’ data space is reserved in X address
memory space between 0x0000 and Ox1FFF, which is
directly addressable via a 13-bit absolute address field
within all memory direct instructions. The remaining X
address space and all of the Y address space is
addressable indirectly. Additionally, the whole of X data
space is addressable using MOV instructions, which
support memory direct addressing with a 16-bit
address field.

3.2.6 SOFTWARE STACK

The dsPIC DSC devices contain a software stack. W15
is used as the Stack Pointer.

The Stack Pointer always points to the first available
free word and grows from lower addresses towards
higher addresses. It pre-decrements for stack pops
and post-increments for stack pushes as shown in
Figure 3-9. Note that for a PC push during any CALL
instruction, the MSB of the PC is zero-extended before
the push, ensuring that the MSB is always clear.

Note: A PC push during exception processing
will concatenate the SRL register to the
MSB of the PC prior to the push.

There is a Stack Pointer Limit register (SPLIM) associ-
ated with the Stack Pointer. SPLIM is uninitialized at
Reset. As is the case for the Stack Pointer, SPLIM<0>
is forced to ‘0’ because all stack operations must be
word aligned. Whenever an effective address (EA) is
generated using W15 as a source or destination
pointer, the address thus generated is compared with
the value in SPLIM. If the contents of the Stack Pointer
(W15) and the SPLIM register are equal and a push
operation is performed, a Stack Error Trap will not
occur. The Stack Error Trap will occur on a subsequent
push operation. Thus, for example, if it is desirable to
cause a Stack Error Trap when the stack grows beyond
address 0x2000 in RAM, initialize the SPLIM with the
value Ox1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is
generated when the Stack Pointer address is found to
be less than 0x0800, thus preventing the stack from
interfering with the Special Function Register (SFR)
space.

A write to the SPLIM register should not be immediately
followed by an indirect read operation using W15.

FIGURE 3-9: CALL STACK FRAME
0x0000 15 0

[2]

B2

.

% 5 PC<15:0> -« W15 (before CALL)

G5 | [000000000] PC<22:16>

ST <Free Word> <« W15 (after CALL)

N |
POP : [--W15]
PUSH : [W15++]

3.2.7 DATA RAM PROTECTION FEATURE

The dsPIC30F5011/5013 devices support data RAM
protection features which enable segments of RAM to
be protected when used in conjunction with Boot and
Secure Code Segment Security. BSRAM (Secure RAM
segment for BS) is accessible only from the Boot Seg-
ment Flash code when enabled. SSRAM (Secure RAM
segment for RAM) is accessible only from the Secure
Segment Flash code when enabled. See Table 3-3 for
the BSRAM and SSRAM SFRs.

© 2011 Microchip Technology Inc.

DS70116J-page 31

'spial 1q Jaysibal jo suondiosap 4of (9¥002SQ) Jenueyy sousisey Aliwed 40€DIdSp, 9Ul 0} 19Jy :L 8JoN

.0, Se peal ‘pajusws|dwiun = — ‘Jiq pazijenuiun = n :puabar

0000 0000 0000 0000] o | z | A0 [N | w4 | o0l | 1dl [21d | oa va gvs | avo | as Vs g0 vO Zv00 s
nnon anng 0000 0000 HaN3oa = = = = = = = = = 0+00 HaN3oa
onan nnnn onon nonnn| 0 _ Jan3od 3€00 JanN3oa
nnnn nang 0000 0000 H1¥V1Sod _ — _ — _ — _ — _ — _ — _ — _ — - 0€00 | HLYVvlSOd
onnn nnnn nnnn annn| o Q _ 118vLS0aQ VEOD | 1LYVLSOQ
nnnn nnnn onnnn oannn FZDOOO wmoo I_-ZDOOD
nnnn nnnn onnnn oannn FZDOOK OMOO I_-ZDOON_
0000 0000 0000 0000 OVdASd = = = = = = = = €00 OVdASd
0000 0000 0000 0000 ovdial = = = = = = = = 2€00 ovdlgal
0000 0000 0000 0000 HOd _ = = = = = = = = = 0€00 HOd
0000 0000 0000 0000 10d 3200 10d
0000 0000 0000 0000 Nnaoov _ (<6£>800V) Uolisualx3-ubls 0200 Nngoov
0000 0000 0000 0000 HE00V V200 HE00V
0000 0000 0000 0000 1900V 8200 18900V
0000 0000 0000 0000 NvO2oV _ (<6£>V00V) Uoisualx3-ubls 9200 Nvoov
0000 0000 0000 0000 HYOOV ¥200 HYOOV
0000 0000 0000 0000 VOOV 2200 YOOV
0000 0000 0000 0000 WIdS 0200 ES
0000 0000 000T 0000 SLM 3100 GLM
0000 0000 0000 0000 7LM 2100 7L
0000 0000 0000 0000 SLM V100 €LM
0000 0000 0000 0000 ZLM 8100 LN
0000 0000 0000 0000 LEM 9100 LLM
0000 0000 0000 0000 0LM 7100 0LM
0000 0000 0000 0000 6M 2100 6M
0000 0000 0000 0000 8M 0100 8M
0000 0000 0000 0000 LM 3000 LM
0000 0000 0000 0000 9M 2000 9M
0000 0000 0000 0000 SM V000 SM
0000 0000 0000 0000 M 8000 M
0000 0000 0000 0000 €M 9000 M
0000 0000 0000 0000 M #000 M
0000 0000 0000 0000 LM 2000 LM
0000 0000 0000 0000 OIUM / OM 0000 OM

(awoH)
9je)s Josay oug rua | zyg | €ung v ug sua | oug | Lug | sug 6ung |oLug |Lng| zing |eLng| vLug SLNE | goouppy | PWEN ¥dS

dsPIC30F5011/5013

(1) dVIN J31S193d F-b0D :€-€ 319vl

© 2011 Microchip Technology Inc.

DS70116J-page 32

dsPIC30F5011/5013

"Splal 11q Je1s1Ba1 Jo suondiosap 104 (9Y00.SA) JENUBW 99UIs)aY Allie 40EDILSP, 94 01 1jed 1L 30N
.0, Se peal ‘pajuswa|dwiun = — ‘§q pazienpiuiun = n :pusba
0000 0000 0000 0000|dSS TH|USS HI[¥SS MI| — — — — — — — — — — — — = 2520 NvYSS
0000 0000 0000 0000|dSE 1| HSE ¥l |¥SE MI| — — — — — — — — — — — — = 0520 Wvysg
0000 0000 0000 0000 <0:€L>1NOISIa = = 2500 INOISIa
nnon nnon anon nonn <0:%1>8X NENG] 0500 AIYEX
Innn nonn nnnn nnnn 1 <L:GL>3A 3700 AN3IAONA
onon nnnn nonn nnon| g <LiGL>SA OY00 | LYSAOWA
Tnon nonn nonn nonn| T <1iG1>3X V#00 | ONIAOWX
onnn nonn nnnn nnnn 0 <1:G1L>SX 8700 1HSAONX
0000 0000 0000 0000 <0:E>WMX <0'€>WMA <0'e>WMg = — | N3AOWA | NIAOWX | 9v00 NODAQOW
0000 0T00 0000 0000| I aNny | ASd | €1dl | 1vSOOV [Malvs| g1vs | vivs | o01a 110 | zia | 1a3 | sn = = = 700 NODY0D
olels 150y oua | vua | zua |cua | vua | sua | oua |sua | eua | eua |ovwua |nua|zua [cva| vug | siwa | oW | owenwss
(Q3INNILNOD) (,)dVIN ¥3LSIDIY JYOD :€-€ 319Vl

DS70116J-page 33

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

NOTES:

DS70116J-page 34 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

4.0 INTERRUPTS

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046).

The dsPIC30F Sensor and General Purpose Family
has up to 41 interrupt sources and 4 processor excep-
tions (traps) which must be arbitrated based on a
priority scheme.

The CPU is responsible for reading the Interrupt Vector
Table (IVT) and transferring the address contained in
the interrupt vector to the program counter. The inter-
rupt vector is transferred from the program data bus
into the program counter via a 24-bit wide multiplexer
on the input of the program counter.

The Interrupt Vector Table (IVT) and Alternate Interrupt
Vector Table (AIVT) are placed near the beginning of
program memory (0x000004). The IVT and AIVT are
shown in Figure 4-1.

The interrupt controller is responsible for pre-
processing the interrupts and processor exceptions
prior to them being presented to the processor core.
The peripheral interrupts and traps are enabled, priori-
tized and controlled using centralized Special Function
Registers:

* IFS0<15:0>, IFS1<15:0>, IFS2<15:0>
All interrupt request flags are maintained in these
three registers. The flags are set by their respec-
tive peripherals or external signals, and they are
cleared via software.

» |[EC0<15:0>, IEC1<15:0>, IEC2<15:0>
All interrupt enable control bits are maintained in
these three registers. These control bits are used
to individually enable interrupts from the
peripherals or external signals.

* IPC0<15:0>... IPC10<7:0>
The user assignable priority level associated with
each of these 41 interrupts is held centrally in
these twelve registers.

* IPL<3:0>
The current CPU priority level is explicitly stored
in the IPL bits. IPL<3> is present in the CORCON
register, whereas IPL<2:0> are present in the
STATUS register (SR) in the processor core.

* INTCON1<15:0>, INTCON2<15:0>
Global interrupt control functions are derived from
these two registers. INTCON1 contains the con-
trol and status flags for the processor exceptions.
The INTCONZ2 register controls the external
interrupt request signal behavior and the use of
the alternate vector table.

* INTTREG<15:0>
The associated interrupt vector number and the
new CPU interrupt priority level are latched into
vector number (VECNUM<5:0>) and interrupt
level (ILR<3:0>) bit fields in the INTTREG regis-
ter. The new interrupt priority level is the priority of
the pending interrupt.

Note: Interrupt flag bits get set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit. User soft-
ware should ensure the appropriate inter-
rupt flag bits are clear prior to enabling an
interrupt.

All interrupt sources can be user assigned to one of 7
priority levels, 1 through 7, via the IPCx registers. Each
interrupt source is associated with an interrupt vector,
as shown in Table 4-1. Levels 7 and 1 represent the
highest and lowest maskable priorities, respectively.

Note: Assigning a priority level of ‘0’ to an inter-
rupt source is equivalent to disabling that
interrupt.

If the NSTDIS bit (INTCON1<15>) is set, nesting of
interrupts is prevented. Thus, if an interrupt is currently
being serviced, processing of a new interrupt is pre-
vented even if the new interrupt is of higher priority than
the one currently being serviced.

Note: The IPL bits become read-only whenever
the NSTDIS bit has been set to ‘1.

Certain interrupts have specialized control bits for fea-
tures like edge or level triggered interrupts, interrupt-
on-change, etc. Control of these features remains
within the peripheral module which generates the
interrupt.

The DISI instruction can be used to disable the
processing of interrupts of priorities 6 and lower for a
certain number of instructions, during which the DISI bit
(INTCON2<14>) remains set.

When an interrupt is serviced, the PC is loaded with the
address stored in the vector location in program mem-
ory that corresponds to the interrupt. There are 63 dif-
ferent vectors within the IVT (refer to Table 4-1). These
vectors are contained in locations 0x000004 through
O0x0000FE of program memory (refer to Table 4-1).
These locations contain 24-bit addresses and in order
to preserve robustness, an address error trap will take
place should the PC attempt to fetch any of these
words during normal execution. This prevents execu-
tion of random data as a result of accidentally decre-
menting a PC into vector space, accidentally mapping
a data space address into vector space or the PC roll-
ing over to 0x000000 after reaching the end of imple-
mented program memory space. Execution of a GOTO
instruction to this vector space will also generate an
address error trap.

© 2011 Microchip Technology Inc.

DS70116J-page 35

dsPIC30F5011/5013

4.1 Interrupt Priority

The user-assignable interrupt priority (IP<2:0>) bits for
each individual interrupt source are located in the Least
Significant 3 bits of each nibble within the IPCx regis-
ter(s). Bit 3 of each nibble is not used and is read as a
‘0’. These bits define the priority level assigned to a
particular interrupt by the user.

Note:

The user-assignable priority levels start at
0 as the lowest priority and level 7 as the
highest priority.

Since more than one interrupt request source may be
assigned to a specific user-assigned priority level, a
means is provided to assign priority within a given level.
This method is called “Natural Order Priority” and is
final.

Natural order priority is determined by the position of an
interrupt in the vector table, and only affects interrupt
operation when multiple interrupts with the same user-
assigned priority become pending at the same time.

Table 4-1 lists the interrupt numbers and interrupt
sources for the dsPIC DSC device and their associated
vector numbers.

Note 1: The natural order priority scheme has 0
as the highest priority and 53 as the
lowest priority.

2: The natural order priority number is the
same as the INT number.

The ability for the user to assign every interrupt to one
of seven priority levels implies that the user can assign
a very high overall priority level to an interrupt with a
low natural order priority. For example, the PLVD (Low-
Voltage Detect) can be given a priority of 7. The INTO
(External Interrupt 0) may be assigned to priority level
1, thus giving it a very low effective priority.

TABLE 4-1: INTERRUPT VECTOR TABLE
INT Vector Int ‘s
Number | Number nterrupt Source

Highest Natural Order Priority

0 8 INTO — External Interrupt 0
1 9 IC1 — Input Capture 1

2 10 OC1 - Output Compare 1

3 11 T1 — Timer1

4 12 IC2 — Input Capture 2

5 13 0OC2 - Output Compare 2

6 14 T2 — Timer2

7 15 T3 — Timer3

8 16 SPI1

9 17 U1RX — UART1 Receiver
10 18 U1TX — UART1 Transmitter
11 19 ADC - ADC Convert Done
12 20 NVM — NVM Write Complete
13 21 SI2C - I2C™ Slave Interrupt
14 22 | MI2C - I2C Master Interrupt
15 23 Input Change Interrupt

16 24 INT1 — External Interrupt 1
17 25 IC7 — Input Capture 7

18 26 IC8 — Input Capture 8

19 27 OC3 — Output Compare 3
20 28 OC4 — Output Compare 4
21 29 T4 — Timer4

22 30 T5 — Timer5

23 31 INT2 — External Interrupt 2
24 32 U2RX — UART2 Receiver
25 33 U2TX — UART2 Transmitter
26 34 SPI2

27 35 C1 - Combined IRQ for CAN1
28 36 IC3 — Input Capture 3

29 37 IC4 — Input Capture 4

30 38 IC5 — Input Capture 5

31 39 IC6 — Input Capture 6

32 40 OC5 — Output Compare 5
33 41 OC6 — Output Compare 6
34 42 OC7 - Output Compare 7
35 43 OC8 — Output Compare 8
36 44 INT3 — External Interrupt 3
37 45 INT4 — External Interrupt 4
38 46 C2 — Combined IRQ for CAN2

39-40 47-48 |Reserved
41 49 DCI — Codec Transfer Done
42 50 LVD - Low-Voltage Detect
43-53 51-61 |Reserved

Lowest Natural Order Priority

DS70116J-page 36

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

4.2 Reset Sequence

A Reset is not a true exception, because the interrupt
controller is not involved in the Reset process. The pro-
cessor initializes its registers in response to a Reset
which forces the PC to zero. The processor then begins
program execution at location 0x000000. A GOTO
instruction is stored in the first program memory loca-
tion immediately followed by the address target for the
GOTO instruction. The processor executes the GOTO to
the specified address and then begins operation at the
specified target (start) address.

4.21 RESET SOURCES

In addition to external Reset and Power-on Reset
(POR), there are 6 sources of error conditions which
‘trap’ to the Reset vector.

* Watchdog Time-out:
The watchdog has timed out, indicating that the
processor is no longer executing the correct flow
of code.

« Uninitialized W Register Trap:
An attempt to use an uninitialized W register as
an address pointer will cause a Reset.

« lllegal Instruction Trap:
Attempted execution of any unused opcodes will
result in an illegal instruction trap. Note that a
fetch of an illegal instruction does not result in an
illegal instruction trap if that instruction is flushed
prior to execution due to a flow change.

* Brown-out Reset (BOR):
A momentary dip in the power supply to the
device has been detected which may result in
malfunction.

» Trap Lockout:
Occurrence of multiple trap conditions
simultaneously will cause a Reset.

4.3 Traps

Traps can be considered as non-maskable interrupts
indicating a software or hardware error, which adhere
to a predefined priority as shown in Figure 4-1. They
are intended to provide the user a means to correct
erroneous operation during debug and when operating
within the application.

Note: If the user does not intend to take correc-
tive action in the event of a trap error
condition, these vectors must be loaded
with the address of a default handler that
simply contains the RESET instruction. If,
on the other hand, one of the vectors
containing an invalid address is called, an

address error trap is generated.

Note that many of these trap conditions can only be
detected when they occur. Consequently, the question-
able instruction is allowed to complete prior to trap
exception processing. If the user chooses to recover
from the error, the result of the erroneous action that
caused the trap may have to be corrected.

There are 8 fixed priority levels for traps: Level 8
through Level 15, which implies that the IPL3 is always
set during processing of a trap.

If the user is not currently executing a trap, and sets the
IPL<3:0> bits to a value of ‘0111’ (Level 7), then all
interrupts are disabled, but traps can still be processed.

4.3.1 TRAP SOURCES

The following traps are provided with increasing prior-
ity. However, since all traps can be nested, priority has
little effect.

Math Error Trap:

The Math Error trap executes under the following four
circumstances:

« If an attempt is made to divide by zero, the divide
operation will be aborted on a cycle boundary and
the trap taken

« If enabled, a Math Error trap will be taken when
an arithmetic operation on either accumulator A or
B causes an overflow from bit 31 and the accumu-
lator guard bits are not utilized

« If enabled, a Math Error trap will be taken when
an arithmetic operation on either accumulator A or
B causes a catastrophic overflow from bit 39 and
all saturation is disabled

« If the shift amount specified in a shift instruction is

greater than the maximum allowed shift amount, a
trap will occur

© 2011 Microchip Technology Inc.

DS70116J-page 37

dsPIC30F5011/5013

Address Error Trap:

This trap is initiated when any of the following

circumstances occurs:

» A misaligned data word access is attempted

» A data fetch from an unimplemented data memory
location is attempted

» A data access of an unimplemented program
memory location is attempted

» An instruction fetch from vector space is
attempted

Note: In the MAC class of instructions, wherein
the data space is split into X and Y data
space, unimplemented X space includes
all of Y space, and unimplemented Y
space includes all of X space.

» Execution of a “BRA #1iteral” instruction or a
“GOTO #1literal”instruction, where 1iteral is
an unimplemented program memory address

» Executing instructions after modifying the PC to
point to unimplemented program memory
addresses. The PC may be modified by loading a
value into the stack and executing a RETURN
instruction.

Stack Error Trap:
This trap is initiated under the following conditions:

» The Stack Pointer is loaded with a value that is
greater than the (user programmable) limit value
written into the SPLIM register (stack overflow)

» The Stack Pointer is loaded with a value that is
less than 0x0800 (simple stack underflow)

Oscillator Fail Trap:

This trap is initiated if the external oscillator fails and
operation becomes reliant on an internal RC backup.

432 HARD AND SOFT TRAPS

It is possible that multiple traps can become active
within the same cycle (e.g., a misaligned word stack
write to an overflowed address). In such a case, the
fixed priority shown in Figure 4-2 is implemented,
which may require the user to check if other traps are
pending, in order to completely correct the fault.

‘Soft’ traps include exceptions of priority level 8 through
level 11, inclusive. The arithmetic error trap (level 11)
falls into this category of traps.

‘Hard’ traps include exceptions of priority level 12
through level 15, inclusive. The address error (level
12), stack error (level 13) and oscillator error (level 14)
traps fall into this category.

Each hard trap that occurs must be acknowledged
before code execution of any type may continue. If a
lower priority hard trap occurs while a higher priority
trap is pending, acknowledged, or is being processed,
a hard trap conflict will occur.

The device is automatically Reset in a hard trap conflict
condition. The TRAPR Status bit (RCON<15>) is set
when the Reset occurs, so that the condition may be
detected in software.

FIGURE 4-1: TRAP VECTORS
Reset - GOTO Instruction 0x000000
. Reset - GOTO Address 0x000002
A Reserved 0x000004

Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
VT Reserved Vector
Reserved Vector
Reserved Vector
Interrupt 0 Vector 0x000014
Interrupt 1 Vector

Decreasing
Priority

Y Interrupt 52 Vector

v Interrupt 53 Vector 0x00007E
Reserved 0x000080
Reserved 0x000082
A Reserved 0x000084

Oscillator Fail Trap Vector
Stack Error Trap Vector
Address Error Trap Vector
Math Error Trap Vector

AIVT Reserved Vector
Reserved Vector
Reserved Vector
Interrupt 0 Vector 0x000094
Interrupt 1 Vector

Interrupt 52 Vector
v Interrupt 53 Vector 0x0000FE

DS70116J-page 38

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

4.4 Interrupt Sequence

All interrupt event flags are sampled in the beginning of
each instruction cycle by the IFSx registers. A pending
interrupt request (IRQ) is indicated by the flag bit being
equal to a ‘1’ in an IFSx register. The IRQ will cause an
interrupt to occur if the corresponding bit in the Interrupt
Enable (IECXx) register is set. For the remainder of the
instruction cycle, the priorities of all pending interrupt
requests are evaluated.

If there is a pending IRQ with a priority level greater
than the current processor priority level in the IPL bits,
the processor will be interrupted.

The processor then stacks the current program counter
and the low byte of the processor STATUS register
(SRL), as shown in Figure 4-2. The low byte of the
STATUS register contains the processor priority level at
the time prior to the beginning of the interrupt cycle.
The processor then loads the priority level for this inter-
rupt into the STATUS register. This action will disable
all lower priority interrupts until the completion of the
Interrupt Service Routine.

FIGURE 4-2: INTERRUPT STACK
FRAME
0x0000 15 0
PC<15:0> ~<«— W15 (before CALL)

SRL] IPL3| PC<22:16>
<Free Word>

<«— W15 (after CALL)

Stack Grows Towards
Higher Address

-
-

POP : [--W15]
PUSH: [W15++]

Note 1: The user can always lower the priority
level by writing a new value into SR. The
Interrupt Service Routine must clear the
interrupt flag bits in the IFSx register
before lowering the processor interrupt
priority, in order to avoid recursive
interrupts.

2: The IPL3 bit (CORCON<3>) is always
clear when interrupts are being pro-
cessed. It is set only during execution of
traps.

The RETFIE (return from interrupt) instruction will
unstack the program counter and STATUS registers to
return the processor to its state prior to the interrupt
sequence.

4.5 Alternate Vector Table

In program memory, the Interrupt Vector Table (IVT) is
followed by the Alternate Interrupt Vector Table (AIVT),
as shown in Figure 4-1. Access to the alternate vector
table is provided by the ALTIVT bit in the INTCON2 reg-
ister. If the ALTIVT bit is set, all interrupt and exception
processes will use the alternate vectors instead of the
default vectors. The alternate vectors are organized in
the same manner as the default vectors. The AIVT sup-
ports emulation and debugging efforts by providing a
means to switch between an application and a support
environment without requiring the interrupt vectors to
be reprogrammed. This feature also enables switching
between applications for evaluation of different
software algorithms at run time.

If the AIVT is not required, the program memory allo-
cated to the AIVT may be used for other purposes.
AIVT is not a protected section and may be freely
programmed by the user.

4.6 Fast Context Saving

A context saving option is available using shadow reg-
isters. Shadow registers are provided for the DC, N,
QV, Z and C bits in SR, and the registers WO through
W3. The shadows are only one level deep. The shadow
registers are accessible using the PUSH. S and POP. S
instructions only.

When the processor vectors to an interrupt, the
PUSH. S instruction can be used to store the current
value of the aforementioned registers into their
respective shadow registers.

If an ISR of a certain priority uses the PUSH.S and
POP.S instructions for fast context saving, then a
higher priority ISR should not include the same instruc-
tions. Users must save the key registers in software
during a lower priority interrupt if the higher priority ISR
uses fast context saving.

4.7 External Interrupt Requests

The interrupt controller supports up to five external
interrupt request signals, INTO-INT4. These inputs are
edge sensitive; they require a low-to-high or a high-to-
low transition to generate an interrupt request. The
INTCONZ2 register has five bits, INTOEP-INT4EP, that
select the polarity of the edge detection circuitry.

4.8 Wake-up from Sleep and Idle

The interrupt controller may be used to wake-up the
processor from either Sleep or Idle modes, if Sleep or
Idle mode is active when the interrupt is generated.

If an enabled interrupt request of sufficient priority is
received by the interrupt controller, then the standard
interrupt request is presented to the processor. At the
same time, the processor will wake-up from Sleep or
Idle and begin execution of the Interrupt Service
Routine (ISR) needed to process the interrupt request.

© 2011 Microchip Technology Inc.

DS70116J-page 39

dsPIC30F5011/5013

"splay Hq 4a)siBau Jo suonduosap 1o} (9700.SQ) Jenue edusiefey Ajiwe 40€0IdSp, OUi 0} Jojo i} 8joN
.0, se peal ‘pajuswsajdwiun = — :puabar
0000 0000 0000 0000 <0'G>NNND3IA - - <0:e>yd7l - - - - 0900 | ©341LNI
0000 00TO 00TO 0000 — _ = _ = = <0:z>dIloa = <0:2>dIaAT = = = = — |8v00 0L0dI
00TO 00TO 00TO 0000 <0:Z>dIELNI — <0:2>dIL¥LNI — <0:2>dIZO — — — — — 9v00 60dI
00T0 00TO 00TO 00TO <0:2>dISO0 — <0:2>dI900 — <0:2>dIL00 — <0:2>dI800 — V00 80dI
00TO 00TO 00TO 00TO <0:2>dI€DI — <0:Z2>dI¥Ql — <0:2>dISOl — <0:2>dI92I — 2v00 20dI
00TO 00TO 00TO 00TO <0:z>dIXden — <0:z>dIX1en — <0:z>dIglds - <0:¢>dIlO - 0v00 90dI
00TO 00TO 00TO 00TO <0:2>dI¥00 — <0:z>dIvL — <0:¢>dISL - <0:¢>dIZ1NI - 3600 SOdI
00TO 00TO 00TO 00TO <0:¢>dILLNI — <0:¢>dIL0l — <0:¢>dI8Dl - <0:¢>dI€E00 - 0600 $OdI
00TO 00TO 00TO 00TO <0:Z>dINAN — <0:2>dIOzZIS — <0:2>dIOZIN — <0:2>dIND — V600 €0dl
00T0 00TO 00TO 00TO <0:2>dILIdS — <0:Z>dIXdLN — <0:Z>dIXL1LN — <0:z>dIav — 8600 2odl
00TO 00TO 00TO 00TO <0:¢>dI2Ql — <0:2>dIZ00 — <0:Z>dIgL — <0:z>dlel — 9600 10dl
00TO 00TO 00TO 00TO <0:2>dI0LNI — <0:2>dILOl — <0:2>dILO0 - <0:z>dIlL - 7600 00dI
0000 0000 0000 0000| JISOO | 3JI9DOO 31200 31800 JIELNI [3IPINI| 3120 - - 3104 | JIAAT - - - - - 0600 ¢o3l
0000 0000 0000 0000| JILLNI 31201 3182l 31€00 Eljzel6] iyl | JISL | JIZLINI | FIX¥en | FIXLlen | Jields | 31L0 | 3I1€D1 | 3P0l | JISOl | 31901 | 3800 103l
0000 0000 0000 0000| 3JIOLNI Ell%e] Ell2e]e} 3L 31201 31200 | 3L JIEL | FILHS | FIXHLN | FIXLIN | J1AVY | JINAN | 102IS | JI0ZIN | FINDO | 0800 003l
0000 0000 0000 0000| dISOO 41900 41200 41800 JIELNI | dIPAINI| 412D — - 41100 | dian — — — — — 8800 ¢s4l
0000 0000 0000 0000| dILLNI ElVze] 41801 d41€00 d41¥00 divL | dISL | dIZLNI | dIX¥Zn | dIX1en | d12idS | 4ILO d41€01 | 4I¥O1 | 4ISOl | 41931 | 9800 LS4l
0000 0000 0000 0000| dIOLNI Ell%e]l 41100 diLL Elte] 41200 | 4digL diel | dILdS | dIXYLN | dIXLiN | dIav | dINAN | 41I02IS | dIOZIN | dIND | #800 0S4l
0000 0000 0000 0000| d30LNI | d3LLNI | d3ZLNI d3ELNI d3aviNI — — - - - - - - - ISId | LAILTY | 2800 | ZNOOLNI
0000 0000 0000 0000 — 1V40SO | HYIMLS | HYIHAAY | YYIHIVIN | — - - J1A0D | 319A0 | 3LVAO - - - — | SIALSN| 0800 | INOOLNI
9je)s J9say o¥g L ug [4%: cug v g syg | 9ug Lyg s g 61g oLNg | Lkug | Zryg | €Lyg | viug | SL¥9 | ¥av wmr__“_mwz
(1) dVIN J31S193d d3TT0ULNOD LdNU™ILNI ¢y 3navi

© 2011 Microchip Technology Inc.

DS70116J-page 40

dsPIC30F5011/5013

5.0 ADDRESS GENERATOR UNITS

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046).

The dsPIC DSC core contains two independent
address generator units: the X AGU and Y AGU. The Y
AGU supports word sized data reads for the DSP MAC
class of instructions only. The dsPIC DSC AGUs
support three types of data addressing:

* Linear Addressing

* Modulo (Circular) Addressing

» Bit-Reversed Addressing

Linear and Modulo Data Addressing modes can be

applied to data space or program space. Bit-reversed
addressing is only applicable to data space addresses.

51 Instruction Addressing Modes

The addressing modes in Table 5-1 form the basis of
the addressing modes optimized to support the specific
features of individual instructions. The addressing
modes provided in the MAC class of instructions are
somewhat different from those in the other instruction
types.

TABLE 5-1:

5.1.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field
(f) to directly address data present in the first 8192
bytes of data memory (near data space). Most file
register instructions employ a working register WO,
which is denoted as WREG in these instructions. The
destination is typically either the same file register, or
WREG (with the exception of the MUL instruction),
which writes the result to a register or register pair. The
MOV instruction allows additional flexibility and can
access the entire data space during file register
operation.

51.2 MCU INSTRUCTIONS

The three operand MCU instructions are of the form:
Operand 3 = Operand 1 <function> Operand 2
where:

Operand 1 is always a working register (i.e., the

addressing mode can only be register direct), which is
referred to as Whb.

Operand 2 can be a W register, fetched from data
memory, or a 5-bit literal. The result location can be
either a W register or an address location. The
following addressing modes are supported by MCU
instructions:

* Register Direct

* Register Indirect

» Register Indirect Post-modified

» Register Indirect Pre-modified

« 5-bit or 10-bit Literal

Note: Not all instructions support all the
addressing modes given above. Individual
instructions may support different subsets

of these addressing modes.

FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode

Description

File Register Direct

The address of the File register is specified explicitly.

Register Direct

The contents of a register are accessed directly.

Register Indirect

The contents of Wn forms the EA.

Register Indirect Post-modified

The contents of Wn forms the EA. Wn is post-modified (incremented or
decremented) by a constant value.

Register Indirect Pre-modified
to form the EA.

Whn is pre-modified (incremented or decremented) by a signed constant value

Register Indirect with Register Offset |The sum of Wn and Wb forms the EA.

Register Indirect with Literal Offset The sum of Wn and a literal forms the EA.

© 2011 Microchip Technology Inc.

DS70116J-page 41

dsPIC30F5011/5013

5.1.3 MOVE AND ACCUMULATOR
INSTRUCTIONS

Move instructions and the DSP accumulator class of
instructions provide a greater degree of addressing
flexibility than other instructions. In addition to the
addressing modes supported by most MCU instruc-
tions, move and accumulator instructions also support
Register Indirect with Register Offset Addressing
mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA.
However, the 4-bit Wb (register offset)
field is shared between both source and
destination (but typically only used by

one).

In summary, the following addressing modes are
supported by move and accumulator instructions:

* Register Direct

* Register Indirect

* Register Indirect Post-modified

» Register Indirect Pre-modified

» Register Indirect with Register Offset (Indexed)

* Register Indirect with Literal Offset

« 8-bit Literal

« 16-bit Literal

Note: Not all instructions support all the
addressing modes given above. Individual
instructions may support different subsets
of these addressing modes.

5.1.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED,
EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also
referred to as MAC instructions, utilize a simplified set of
addressing modes to allow the user to effectively
manipulate the data pointers through register indirect
tables.

The 2 source operand prefetch registers must be a
member of the set {W8, W9, W10, W11}. For data
reads, W8 and W9 will always be directed to the X
RAGU and W10 and W11 will always be directed to the
Y AGU. The effective addresses generated (before and
after modification) must, therefore, be valid addresses
within X data space for W8 and W9 and Y data space
for W10 and W11.

Note: Register indirect with register offset
addressing is only available for W9 (in X

space) and W11 (in Y space).

In summary, the following addressing modes are
supported by the MAC class of instructions:

* Register Indirect

» Register Indirect Post-Modified by 2

» Register Indirect Post-Modified by 4

» Register Indirect Post-Modified by 6

» Register Indirect with Register Offset (Indexed)

5.1.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above,
some instructions use literal constants of various sizes.
For example, BRA (branch) instructions use 16-bit
signed literals to specify the branch destination directly,
whereas the DIST instruction uses a 14-bit unsigned
literal field. In some instructions, such as ADD Acc, the
source of an operand or result is implied by the opcode
itself. Certain operations, such as NOP, do not have any
operands.

5.2 Modulo Addressing

Modulo addressing is a method of providing an auto-
mated means to support circular data buffers using
hardware. The objective is to remove the need for soft-
ware to perform data address boundary checks when
executing tightly looped code, as is typical in many
DSP algorithms.

Modulo addressing can operate in either data or pro-
gram space (since the data pointer mechanism is
essentially the same for both). One circular buffer can
be supported in each of the X (which also provides the
pointers into program space) and Y data spaces. Mod-
ulo addressing can operate on any W register pointer.
However, it is not advisable to use W14 or W15 for mod-
ulo addressing since these two registers are used as
the Stack Frame Pointer and Stack Pointer,
respectively.

In general, any particular circular buffer can only be
configured to operate in one direction, as there are cer-
tain restrictions on the buffer start address (for incre-
menting buffers), or end address (for decrementing
buffers) based upon the direction of the buffer.

The only exception to the usage restrictions is for buf-
fers that have a power-of-2 length. As these buffers
satisfy the start and end address criteria, they may
operate in a Bidirectional mode (i.e., address boundary
checks are performed on both the lower and upper
address boundaries).

DS70116J-page 42

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

5.2.1 START AND END ADDRESS

The modulo addressing scheme requires that a starting
and an ending address be specified and loaded
into the 16-bit Modulo Buffer Address registers:
XMODSRT, XMODEND, YMODSRT and YMODEND
(see Table 3-3).

Note:

Y space modulo addressing EA calcula-
tions assume word sized data (LSb of
every EA is always clear).

The length of a circular buffer is not directly specified. It
is determined by the difference between the corre-
sponding start and end addresses. The maximum pos-
sible length of the circular buffer is 32K words
(64 Kbytes).

5.2.2 W ADDRESS REGISTER

SELECTION

The Modulo and Bit-Reversed Addressing Control reg-
ister MODCON<15:0> contains enable flags as well as
a W register field to specify the W address registers.
The XWM and YWM fields select which registers will
operate with modulo addressing. If XWM = 15, X
RAGU and X WAGU modulo addressing is disabled.
Similarly, if YWM = 15, Y AGU modulo addressing is
disabled.

The X Address Space Pointer W register (XWM), to
which modulo addressing is to be applied, is stored in
MODCON<3:0> (see Table 3-3). Modulo addressing is
enabled for X data space when XWM is set to any value
other than ‘15" and the XMODEN bit is set at
MODCON<15>.

The Y Address Space Pointer W register (YWM), to
which modulo addressing is to be applied, is stored in
MODCON<7:4>. Modulo addressing is enabled for Y
data space when YWM is set to any value other than
‘15" and the YMODEN bit is set at MODCON<14>.

FIGURE 5-1: MODULO ADDRESSING OPERATION EXAMPLE
Byte
Address MOV #0x1100,wWO0
MOV WO, XMODSRT ;set modulo start address
MOV #0x1163,WO0
MOV WO, MODEND ;set modulo end address
0x1100 MOV #0x8001,W0
MOV WO, MODCON ;enable W1, X AGU for modulo
MOV #0x0000, WO ;WO holds buffer fill value
MOV #0x1110, W1 ;point W1 to buffer
DO AGAIN, #0x31 ;£fill the 50 buffer locations
MOV WO, [Wl++] ;£11l the next location
0x1163 AGAIN: INC WO,WO ;increment the fill value

Start Addr = 0x1100
End Addr = 0x1163
Length = 0x0032 words

© 2011 Microchip Technology Inc.

DS70116J-page 43

dsPIC30F5011/5013

5.2.3 MODULO ADDRESSING

APPLICABILITY

Modulo addressing can be applied to the Effective
Address (EA) calculation associated with any W regis-
ter. It is important to realize that the address boundar-
ies check for addresses less than, or greater than, the
upper (for incrementing buffers), and lower (for decre-
menting buffers) boundary addresses (not just equal
to). Address changes may, therefore, jump beyond
boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is
written back to the register only when Pre-
Modify or Post-Modify Addressing mode is
used to compute the effective address.
When an address offset (e.g., [W7 + W2])
is used, modulo address correction is per-

formed but the contents of the register

remain unchanged.

5.3

Bit-reversed addressing is intended to simplify data re-
ordering for radix-2 FFT algorithms. It is supported by
the X AGU for data writes only.

The modifier, which may be a constant value or register
contents, is regarded as having its bit order reversed.
The address source and destination are kept in normal
order. Thus, the only operand requiring reversal is the
modifier.

Bit-Reversed Addressing

5.3.1 BIT-REVERSED ADDRESSING

IMPLEMENTATION
Bit-reversed addressing is enabled when:

1. BWM (W register selection) in the MODCON
register is any value other than ‘15’ (the stack
cannot be accessed using bit-reversed
addressing) and

2. the BREN bit is set in the XBREYV register and

3. the addressing mode used is Register Indirect
with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is M = 2N bytes,
then the last ‘N’ bits of the data buffer start address
must be zeros.

XB<14:0> is the bit-reversed address modifier or ‘pivot
point’ which is typically a constant. In the case of an
FFT computation, its value is equal to half of the FFT
data buffer size.

Note: All bit-reversed EA calculations assume
word sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)

addresses.

When enabled, bit-reversed addressing will only be
executed for register indirect with pre-increment or
post-increment addressing and word sized data writes.
It will not function for any other addressing mode or for
byte sized data, and normal addresses will be gener-
ated instead. When bit-reversed addressing is active,
the W address pointer will always be added to the
address modifier (XB) and the offset associated with
the Register Indirect Addressing mode will be ignored.
In addition, as word sized data is a requirement, the
LSb of the EA is ignored (and always clear).

Note: Modulo addressing and bit-reversed
addressing should not be enabled
together. In the event that the user
attempts to do this, bit-reversed address-
ing will assume priority when active for the
X WAGU, and X WAGU modulo address-
ing will be disabled. However, modulo
addressing will continue to function in the X
RAGU.

If bit-reversed addressing has already been enabled by
setting the BREN (XBREV<15>) bit, then a write to the
XBREV register should not be immediately followed by
an indirect read operation using the W register that has
been designated as the bit-reversed pointer.

FIGURE 5-2: BIT-REVERSED ADDRESS EXAMPLE

Sequential Address

b15|b14|b13|b12 [b11 b10 |b9 | b8 | b7 | b6 | b5 |b4 [b3 [b2 b1 | O
Bit Locations Swapped Left-to-Right
Y Around Center of Binary Value

b15|b14|b13(b12 |b11|{b10| b9 | b8 | b7| b6 | b5| b1 [b2| b3 | b4 | O

Bit-Reversed Address

Pivot Point

XB = 0x0008 for a 16-word Bit-Reversed Buffer

DS70116J-page 44

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

TABLE 5-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

Normal Address

Bit-Reversed Address

A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 8
0 0 1 0 2 0 1 0 0 4
0 0 1 1 3 1 1 0 0 12
0 1 0 0 4 0 0 1 0 2
0 1 0 1 5 1 0 1 0 10
0 1 1 0 6 0 1 1 0 6
0 1 1 1 7 1 1 1 0 14
1 0 0 0 8 0 0 0 1 1
1 0 0 1 9 1 0 0 1 9
1 0 1 0 10 0 1 0 1 5
1 0 1 1 11 1 1 0 1 13
1 1 0 0 12 0 0 1 1 3
1 1 0 1 13 1 0 1 1 1
1 1 1 0 14 0 1 1 1 7
1 1 1 1 15 1 1 1 1 15

TABLE 5-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER

Buffer Size (Words) XB<14:0> Bit-Reversed Address Modifier Value
2048 0x0400
1024 0x0200
512 0x0100
256 0x0080

128 0x0040
64 0x0020
32 0x0010
16 0x0008
8 0x0004
4 0x0002
2 0x0001

© 2011 Microchip Technology Inc.

DS70116J-page 45

dsPIC30F5011/5013

NOTES:

DS70116J-page 46 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046).

The dsPIC30F family of devices contains internal pro-
gram Flash memory for executing user code. There are
two methods by which the user can program this
memory:

* Run-Time Self-Programming (RTSP)
¢ In-Circuit Serial Programming (ICSP)

6.1 In-Circuit Serial Programming
(ICSP)

dsPIC30F devices can be serially programmed while in
the end application circuit. This is simply done with two
lines for Programming Clock and Programming Data
(which are named PGC and PGD, respectively), and
three other lines for Power (VDD), Ground (Vss) and
Master Clear (MCLR). This allows customers to manu-
facture boards with unprogrammed devices, and then
program the microcontroller just before shipping the
product. This also allows the most recent firmware or a
custom firmware to be programmed.

6.2 Run-Time Self-Programming
(RTSP)

RTSP is accomplished using TBLRD (table read) and
TBLWT (table write) instructions.

With RTSP, the user may erase program memory, 32
instructions (96 bytes) at a time and can write program
memory data, 32 instructions (96 bytes) at a time.

6.3 Table Instruction Operation
Summary

The TBLRDL and the TBLWTL instructions are used to
read or write to bits<15:0> of program memory.
TBLRDL and TBLWTL can access program memory in
Word or Byte mode.

The TBLRDH and TBLWTH instructions are used to read
or write to bits<23:16> of program memory. TBLRDH
and TBLWTH can access program memory in Word or
Byte mode.

A 24-bit program memory address is formed using
bits<7:0> of the TBLPAG register and the effective
address (EA) from a W register specified in the table
instruction, as shown in Figure 6-1.

FIGURE 6-1: ADDRESSING FOR TABLE AND NVM REGISTERS
Lo 24 bits b
Using i ™
Program | 0 | Program Counter | O|
Counter | | ||
| ||
I NVMADR Reg EA |]
Using |
NVMADR {1/0 | NVMADRU Reg |
Addressing —>|<—LI
| | 8bits | 16 bits []
| | [
orking Reg
[Working Reg EA
_ l
Using
1/0
Table TBLPAG Reg ||
Instruction | | 8 bits l‘TVl
la ! I
Byt
User/Configuration ¢ sélzct
Space Select 24-bit EA

© 2011 Microchip Technology Inc.

DS70116J-page 47

dsPIC30F5011/5013

6.4 RTSP Operation

The dsPIC30F Flash program memory is organized
into rows and panels. Each row consists of 32 instruc-
tions, or 96 bytes. Each panel consists of 128 rows, or
4K x 24 instructions. RTSP allows the user to erase one
row (32 instructions) at a time and to program four
instructions at one time. RTSP may be used to program
multiple program memory panels, but the table pointer
must be changed at each panel boundary.

Each panel of program memory contains write latches
that hold 32 instructions of programming data. Prior to
the actual programming operation, the write data must
be loaded into the panel write latches. The data to be
programmed into the panel is loaded in sequential
order into the write latches: instruction 0, instruction 1,
etc. The instruction words loaded must always be from
a group of 32 boundary.

The basic sequence for RTSP programming is to set up
a table pointer, then do a series of TBLWT instructions
to load the write latches. Programming is performed by
setting the special bits in the NVMCON register. 32
TBLWTL and four TBLWTH instructions are required to
load the 32 instructions. If multiple panel programming
is required, the table pointer needs to be changed and
the next set of multiple write latches written.

All of the table write operations are single-word writes
(2 instruction cycles), because only the table latches
are written. A programming cycle is required for
programming each row.

The Flash Program Memory is readable, writable and
erasable during normal operation over the entire VDD
range.

6.5 Control Registers

The four SFRs used to read and write the program
Flash memory are:

*« NVMCON

* NVMADR

*« NVMADRU

* NVMKEY

6.5.1 NVMCON REGISTER

The NVMCON register controls which blocks are to be
erased, which memory type is to be programmed and
the start of the programming cycle.

6.5.2 NVMADR REGISTER

The NVMADR register is used to hold the lower two
bytes of the effective address. The NVMADR register
captures the EA<15:0> of the last table instruction that
has been executed and selects the row to write.

6.5.3 NVMADRU REGISTER

The NVMADRU register is used to hold the upper byte
of the effective address. The NVMADRU register cap-
tures the EA<23:16> of the last table instruction that
has been executed.

6.5.4 NVMKEY REGISTER

NVMKEY is a write-only register that is used for write
protection. To start a programming or an erase
sequence, the user must consecutively write 0x55 and
O0xAA to the NVMKEY register. Refer to Section 6.6
“Programming Operations” for further details.

Note: The user can also directly write to the
NVMADR and NVMADRU registers to
specify a program memory address for
erasing or programming.

DS70116J-page 48

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

6.6

A complete programming sequence is necessary for
programming or erasing the internal Flash in RTSP
mode. A programming operation is nominally 2 msec in
duration and the processor stalls (waits) until the oper-
ation is finished. Setting the WR bit (NVMCON<15>)
starts the operation, and the WR bit is automatically
cleared when the operation is finished.

Programming Operations

6.6.1 PROGRAMMING ALGORITHM FOR

PROGRAM FLASH

The user can erase or program one row of program
Flash memory at a time. The general process is:

1. Read one row of program Flash (32 instruction
words) and store into data RAM as a data
“‘image”.

2. Update the data image with the desired new
data.

3. Erase program Flash row.

a) Set up NVMCON register for multi-word,
program Flash, erase and set WREN bit.
b) Write address of row to be erased into

NVMADRU/NVMDR.
c) Write 0x55 to NVMKEY.
Write 0xAA to NVMKEY.
e) Setthe WR bit. This will begin erase cycle.
f) CPU will stall for the duration of the erase

4. Write 32 instruction words of data from data
RAM ‘“image” into the program Flash write

latches.

5. Program 32 instruction words into program
Flash.
a) Set up NVMCON register for multi-word,

program Flash, program, and set WREN
bit.

b) Write 0x55 to NVMKEY.

c) Write 0xAA to NVMKEY.

d) Set the WR bit. This will begin program
cycle.

e) CPU will stall for duration of the program
cycle.

f) The WR bit is cleared by the hardware
when program cycle ends.
6. Repeat steps 1 through 5 as needed to program
desired amount of program Flash memory.

6.6.2 ERASING A ROW OF PROGRAM

MEMORY

Example 6-1 shows a code sequence that can be used
to erase a row (32 instructions) of program memory.

Initialize PM Page Boundary SFR
Intialize in-page EA[15:0]
Initialize NVMADR SFR

Block all interrupts with priority <7 for

pointer

Start the erase sequence
Insert two NOPs after the erase

cycle.
g) The WR bit is cleared when erase cycle
ends.
EXAMPLE 6-1: ERASING A ROW OF PROGRAM MEMORY

; Setup NVMCON for erase operation, multi word write

; program memory selected, and writes enabled
MOV #0x4041,W0 ;
MOV WO'NVMCON ; Init NVMCON SFR

; Init pointer to row to be ERASED
MOV #tblpage (PROG_ADDR) , WO ;
MOV WO,NVMADRU ;
MOV #tbloffset(PROGiADDR),WO ;
MOV W0, NVMADR ;
DISIT #5 ;

; next 5 instructions

MOV #0x55, W0
MOV WO NVMKEY ; Write the 0x55 key
MOV #0xAA, W1 ;
MOV W1l NVMKEY ; Write the OxAA key
BSET NVMCON, #WR ;
NOP ;
NOP ; command is asserted

© 2011 Microchip Technology Inc.

DS70116J-page 49

dsPIC30F5011/5013

6.6.3 LOADING WRITE LATCHES

Example 6-2 shows a sequence of instructions that
can be used to load the 96 bytes of write latches. 32
TBLWTL and 32 TBLWTH instructions are needed to
load the write latches selected by the table pointer.

EXAMPLE 6-2: LOADING WRITE LATCHES

; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled

MOV #0x0000,WO0 ;
MOV WO,TBLPAG ; Initialize PM Page Boundary SFR
MOV #0x6000, WO ; An example program memory address

; Perform the TBLWT instructions to write the latches
; Oth_program word
MOV #LOW_WORD 0, W2 ;
MOV #HIGH BYTE 0, W3 ;
TBLWTL W2,[WO] ; Write PM low word into program latch
TBLWTH WS,[WO++] ; Write PM high byte into program latch
; lst _program word
MOV #LOW _WORD 1, W2 ;
MOV #HIGH BYTE 1,W3 ;
TBLWTL W2,[WO] ; Write PM low word into program latch
TBLWTH W3,[WO++] ; Write PM high byte into program latch
; 2nd_program_word
MOV #LOW_WORD_2, W2 ;
MOV #HIGH BYTE 2,W3 ;
TBLWTL W2, [WO] ; Write PM low word into program latch
TBLWTH W3, [WO++] ; Write PM high byte into program latch

; 31lst program word

MOV #LOW_WORD 31,W2 ;
MOV #HIGH BYTE 31,W3 ;
TBLWTL W2, [WO] ; Write PM low word into program latch
TBLWTH W3, [WO++] ; Write PM high byte into program latch

Note: In Example 6-2, the contents of the upper byte of W3 has no effect.

6.6.4 INITIATING THE PROGRAMMING
SEQUENCE

For protection, the write initiate sequence for NVMKEY
must be used to allow any erase or program operation
to proceed. After the programming command has been
executed, the user must wait for the programming time
until programming is complete. The two instructions fol-
lowing the start of the programming sequence should
be NOPs.

EXAMPLE 6-3: INITIATING A PROGRAMMING SEQUENCE

DISI #5 ; Block all interrupts with priority <7 for
; next 5 instructions

MOV #0x55, W0 ;

MOV WO'NVMKEY ; Write the 0x55 key

MOV #0xAA, W1 :

MOV WI,NVMKEY ; Write the O0xAA key

BSET NVMCON, #WR ; Start the erase sequence

NOP ; Insert two NOPs after the erase

NOP ; command is asserted

DS70116J-page 50 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

"Splay 1q JeysiBel Jo suonduosep 10y (9y00.SQ) JEnuey sousiajey Ajlwe H0EDIdSP, 94} 0} 18j0y i 8JON

.0, Se peal ‘pajuswsa|dwiun = — ‘}q paz|epuiun = n puaba

0000 0000 0000 0000 <0:/>A3M - - - - - — - - 9920 AINNAN

nOnn onnn 0000 0000 <91:6Z>HAVINAN — | =1 =1=1 = — — — 910 NYAYWAN

nnnon nonnn nnonn nononn <0'S1>4AvINAN 9.0 HAVINAN

0000 0000 0000 0000 <0:9>d090dd — |[AML] — — — — HHFIM NIHIM dM 0920 NOODIWAN
S13S3d IV oxg _ Lug _ zyg _ €3g _ v g _ sug _ 91g Zyg |syg|exg (oLyg|iryg|ciyg €L g v g SiLyg Ippvy aweN 3|l

(1) dVIN d3LS193d NAN ‘-9 31avl

DS70116J-page 51

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

NOTES:

DS70116J-page 52 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

7.0 DATA EEPROM MEMORY

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual’
(DS70046).

The Data EEPROM Memory is readable and writable
during normal operation over the entire VDD range. The
data EEPROM memory is directly mapped in the
program memory address space.

The four SFRs used to read and write the program
Flash memory are used to access data EEPROM
memory as well. As described in Section 6.5 “Control
Registers”, these registers are:

+ NVMCON
* NVMADR
+ NVMADRU
*« NVMKEY

The EEPROM data memory allows read and write of
single words and 16-word blocks. When interfacing to
data memory, NVMADR in conjunction with the
NVMADRU register are used to address the EEPROM
location being accessed. TBLRDL and TBLWTL
instructions are used to read and write data EEPROM.
The dsPIC30F devices have up to 8 Kbytes (4K
words) of data EEPROM with an address range from
0x7FF000 to Ox7FFFFE.

A word write operation should be preceded by an erase
of the corresponding memory location(s). The write typ-
ically requires 2 ms to complete but the write time will
vary with voltage and temperature.

A program or erase operation on the data EEPROM
does not stop the instruction flow. The user is respon-
sible for waiting for the appropriate duration of time
before initiating another data EEPROM write/erase
operation. Attempting to read the data EEPROM while
a programming or erase operation is in progress results
in unspecified data.

Control bit WR initiates write operations similar to pro-
gram Flash writes. This bit cannot be cleared, only set,
in software. They are cleared in hardware at the com-
pletion of the write operation. The inability to clear the
WR bit in software prevents the accidental or
premature termination of a write operation.

The WREN bit, when set, will allow a write operation.
On power-up, the WREN bit is clear. The WRERR bit is
set when a write operation is interrupted by a MCLR
Reset or a WDT Time-out Reset during normal opera-
tion. In these situations, following Reset, the user can
check the WRERR bit and rewrite the location. The
address register NVMADR remains unchanged.

Note: Interrupt flag bit NVMIF in the IFSO regis-
ter is set when write is complete. It must
be cleared in software.

71 Reading the Data EEPROM

A TBLRD instruction reads a word at the current pro-
gram word address. This example uses WO as a
pointer to data EEPROM. The result is placed in
register W4 as shown in Example 7-1.

EXAMPLE 7-1: DATA EEPROM READ

MOV #LOW_ADDR WORD,WO ; Init Pointer
MOV #HIGHiADDR7WORD, Wl

MOV erTBLPAG

TBLRDL [WO], W4 ; read data EEPROM|

© 2011 Microchip Technology Inc.

DS70116J-page 53

dsPIC30F5011/5013

7.2 Erasing Data EEPROM

7.21 ERASING A BLOCK OF DATA
EEPROM

In order to erase a block of data EEPROM, the
NVMADRU and NVMADR registers must initially point
to the block of memory to be erased. Configure
NVMCON for erasing a block of data EEPROM, and
set the ERASE and WREN bits in the NVMCON
register. Setting the WR bit initiates the erase as
shown in Example 7-2.

EXAMPLE 7-2: DATA EEPROM BLOCK ERASE

; Select data EEPROM block, ERASE, WREN bits
MOV #0x4045,W0
MOV WO,NVMCON ; Initialize NVMCON SFR

; Start erase cycle by setting WR after writing key sequence
DISI #5 ; Block all interrupts with priority <7 for
; next 5 instructions

MOV #0x55, W0 H

MOV WO,NVMKEY ; Write the 0x55 key

MOV #0xAA, W1 ;

MOV Wl'NVMKEY ; Write the OxAA key

BSET NVMCON, #WR ; Initiate erase sequence
NOP

NOP

; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete

7.2.2 ERASING A WORD OF DATA
EEPROM

The NVMADRU and NVMADR registers must point to
the block. Select erase a block of data Flash, and set
the ERASE and WREN bits in the NVMCON register.
Setting the WR bit initiates the erase, as shown in
Example 7-3.

EXAMPLE 7-3: DATA EEPROM WORD ERASE

; Select data EEPROM word, ERASE, WREN bits
MOV #0x4044,W0
MOV WO , NVMCON

; Start erase cycle by setting WR after writing key sequence
DISI #5 ; Block all interrupts with priority <7 for
; next 5 instructions

MOV #0x55,W0 ;

MOV WO NVMKEY ; Write the 0x55 key

MOV #0xAA, W1 ;

MOV W1l NVMKEY ; Write the OxAA key

BSET NVMCON, #WR ; Initiate erase sequence
NOP

NOP

; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete

DS70116J-page 54 © 2011 Microchip Technology Inc.

dsPIC30F5011/5013

7.3

Writing to the Data EEPROM

To write an EEPROM data location, the following
sequence must be followed:

1.

interrupt.
h) The WR bit is cleared when the erase cycle
ends.
2. Write data word into data EEPROM write
latches.
3. Program 1 data word into data EEPROM.
a) Select word, data EEPROM program, and
set WREN bit in NVMCON register.
b) Enable NVM write done interrupt (optional).
c) Write 0x55 to NVMKEY.
d) Write 0xAA to NVMKEY.
e) Set the WR bit. This will begin program
cycle.
f) Either poll NVMIF bit or wait for NVM
interrupt.
g) The WR bit is cleared when the write cycle
ends.
EXAMPLE 7-4: DATA EEPROM WORD WRITE

Erase data EEPROM word.

a) Select word, data EEPROM erase and set
WREN bit in NVMCON register.

b) Write address of word to be erased into
NVMADR.

c) Enable NVM interrupt (optional).

d) Write 0x55 to NVMKEY.

e) Write OXAA to NVMKEY.

f) Set the WR bit. This will begin erase cycle.
g) Either poll NVMIF bit or wait for NVMIF

The write will not initiate if the above sequence is not
exactly followed (write 0x55 to NVMKEY, write 0xAA to
NVMCON, then set WR bit) for each word. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in NVMCON must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code exe-
cution. The WREN bit should be kept clear at all times
except when updating the EEPROM. The WREN bit is
not cleared by hardware.

After a write sequence has been initiated, clearing the
WREN bit will not affect the current write cycle. The WR
bit will be inhibited from being set unless the WREN bit
is set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the Nonvolatile Memory Write
Complete Interrupt Flag bit (NVMIF) is set. The user
may either enable this interrupt or poll this bit. NVMIF
must be cleared by software.

7.3.1 WRITING A WORD OF DATA

EEPROM

Once the user has erased the word to be programmed,
then a table write instruction is used to write one write
latch, as shown in Example 7-4.

; Point to data memory

MOV #LOW_ADDR_WORD, WO
MOV #HIGH ADDR WORD, W1
MOV W1 TBLPAG

MOV #LOW (WORD) , W2
TBLWTL W2, [WO]

; The NVMADR captures last table access address
; Select data EEPROM for 1 word op

MOV #0x4004,W0

MOV WO NVMCON

; Operate key to allow write operation

DISI #5

MOV #0x55, WO
MOV WO, NVMKEY
MOV #0xAA, W1
MOV W1l NVMKEY
BSET NVMCON, #WR
NOP

NOP

; Write cycle will complete in 2mS.

; Init pointer

; Get data
; Write data

; Block all interrupts with priority <7 for
; next 5 instructions

; Write the 0x55 key
; Write the 0xAA key

; Initiate program sequence

CPU is not stalled for the Data Write Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete

© 2011 Microchip Technology Inc.

DS70116J-page 55

dsPIC30F5011/5013

7.3.2 WRITING A BLOCK OF DATA
EEPROM

To write a block of data EEPROM, write to all sixteen
latches first, and then set the NVMCON register and
program the block.

EXAMPLE 7-5: DATA EEPROM BLOCK WRITE
MOV #LOWiADDR7WORD,WO ; Init pointer

MOV #HIGH_ADDR_WORD, W1

MOV WIITBLPAG

MOV #datal, W2 ; Get 1lst data
TBLWTL WZI[WO]++ ; write data

MOV #data2, W2 ; Get 2nd data
TBLWTL W2 [WOJ++ ; write data

MOV #data3, w2 ; Get 3rd data
TBLWTL WZI[WOJ++ ; write data

MOV #datad, w2 ; Get 4th data
TBLWTL W2,[WO]++ ; write data

MOV #data5, W2 ; Get 5th data
TBLWTL WZI[WO ++ ; write data

MOV #data6, W2 ; Get 6th data
TBLWTL WZI[WO ++ ; write data

MOV #data7,W2 ; Get 7th data
TBLWTL WZI[WO ++ ; write data

MOV #data8, W2 ; Get 8th data
TBLWTL W2 [WOJ++ ; write data

MOV #data9, w2 ; Get 9th data
TBLWTL W2,[WO]++ ; write data

MOV #datalO, W2 ; Get 10th data
TBLWTL W2,[WO]++ ; write data

MOV #datall, w2 ; Get 1lth data
TBLWTL WZI[WO ++ ; write data

MOV #datal2, W2 ; Get 12th data
TBLWTL WZI[WO]++ ; write data

MOV #datal3, w2 ; Get 13th data
TBLWTL WZI[WO ++ ; write data

MOV #datald, w2 ; Get 14th data
TBLWTL W2 [WOJ++ ; write data

MOV #datal5, W2 ; Get 15th data
TBLWTL W2,[WO]++ ; write data

MOV #datalo, W2 ; Get 16th data
TBLWTL W2,[WOJ++ ; write data. The NVMADR captures last table access address.
MOV #0x400A,WO0 ; Select data EEPROM for multi word op
MOV WO,NVMCON ; Operate Key to allow program operation
DISI #5 ; Block all interrupts with priority <7 for next 5 instructions
MOV #0x55, W0

MOV WO’NVMKEY ; Write the 0x55 key
MOV #0xAA, W1

MOV WIINVMKEY ; Write the 0xAA key
BSET NVMCON, #WR ; Start write cycle
NOP

NOP

7.4 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the mem-
ory should be verified against the original value. This
should be used in applications where excessive writes
can stress bits near the specification limit.

7.5 Protection Against Spurious Write

There are conditions when the device may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been built-in. On power-up, the WREN bit is cleared,
and the Power-up Timer prevents EEPROM write.

The write initiate sequence and the WREN bit together
help prevent an accidental write during brown-out,
power glitch or software malfunction.

DS70116J-page 56

© 2011 Microchip Technology Inc.

dsPIC30F5011/5013

8.0 I/OPORTS

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046).

All of the device pins (except VDD, Vss, MCLR and
OSC1/CLKI) are shared between the peripherals and
the parallel 1/0 ports.

All 1/O input ports feature Schmitt Trigger inputs for
improved noise immunity.

8.1 Parallel I/0 (P1O) Ports

When a peripheral is enabled and