Blue LED Emitter # LED ENGIN BRIGHT LIGHT. TINY PACKAGE. # LZ4-00B208 # **Key Features** - High Luminous Efficacy 10W Blue LED - Ultra-small foot print 7.0mm x 7.0mm - Surface mount ceramic package with integrated glass lens - Low Thermal Resistance (2.8°C/W) - Individually addressable die - Very high Luminous Flux density - JEDEC Level 1 for Moisture Sensitivity Level - Autoclave complaint (JEDEC JESD22-A102-C) - Lead (Pb) free and RoHS compliant - Reflow solderable (up to 6 cycles) - Emitter available on Standard MCPCB (optional) ### **Typical Applications** - Architectural lighting - Automotive and Marine lighting - Stage and Studio lighting - Emergency lighting - Buoys - Beacons - Airfield lighting and signs ### **Description** The LZ4-00B208 Blue LED emitter provides 10W power in an extremely small package. With a 7.0mm x 7.0mm ultra-small footprint, this package provides exceptional luminous flux density. LED Engin's LZ4-00B208 LED offers ultimate design flexibility with individually addressable die. The patent-pending design has unparalleled thermal and optical performance and excellent UV resistance. The high quality materials used in the package are chosen to optimize light output and minimize stresses which results in monumental reliability and lumen maintenance. The robust product design thrives in outdoor applications with high ambient temperatures and high humidity. # Part number options ### Base part number | Part number | Description | |-----------------|--| | LZ4-00B208-xxxx | LZ4 emitter | | LZ4-40B208-xxxx | LZ4 emitter on Standard Star 1 channel MCPCB | # Bin kit option codes | B2, Blue (460nm) | | | | | |-------------------|--------------------|-----------------|--|--| | Kit number suffix | Min
flux
Bin | Color Bin Range | Description | | | 0000 | L | B3 – B4 | full distribution flux; full distribution wavelength | | #### Notes 1. Default bin kit option is -0000 ### **Luminous Flux Bins** Table 1: | Bin Code | Minimum Luminous Flux (Φ_V) @ $I_F = 700$ mA $^{[1,2]}$ (Im) | Maximum Luminous Flux (Φ_V) @ $I_F = 700$ mA $^{[1,2]}$ (Im) | |----------|---|---| | L | 93 | 117 | | М | 117 | 146 | | N | 146 | 182 | | Р | 182 | 228 | #### Notes for Table 1 - 1. Luminous flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements. - 2. Future products will have even higher levels of luminous flux performance. Contact LED Engin Sales for updated information. # **Dominant Wavelength Bins** Table 2: | Bin Code | Minimum Dominant Wavelength (λ_D) @ $I_F = 700$ mA $^{[1,2]}$ (nm) | Maximum Dominant Wavelength (λ_D) @ $I_F = 700$ mA $^{[1,2]}$ (nm) | | |----------|---|---|--| | В3 | 450 | 455 | | | B4 | 455 | 460 | | #### Notes for Table 2 - 1. Dominant wavelength is derived from the CIE 1931 Chromaticity Diagram and represents the perceived hue. - 2. LED Engin maintains a tolerance of \pm 1.0nm on dominant wavelength measurements. # **Forward Voltage Bins** Table 3: | Bin Code | Minimum Forward Voltage (V _F) @ I _F = 700mA ^[1,2] (V) | Maximum Forward Voltage (V _F) @ I _F = 700mA ^[1,2] (V) | | |----------|---|---|--| | 0 | 11.2 | 15.2 | | #### Notes for Table 3: - 1. LED Engin maintains a tolerance of \pm 0.16V for forward voltage measurements. - Forward Voltage is binned with all four LED dice connected in series. # **Absolute Maximum Ratings** Table 4: | Parameter | Symbol | Value | Unit | |--|---|---|------| | DC Forward Current [1] | I _F | 1000 | mA | | Peak Pulsed Forward Current ^[2] | I _{FP} | 1500 | mA | | Reverse Voltage | V_R | See Note 3 | V | | Storage Temperature | T _{stg} | -40 ~ +150 | °C | | Junction Temperature | T _J | 150 | °C | | Soldering Temperature [4] | T_{sol} | 260 | °C | | Allowable Reflow Cycles | 6 | | | | Autoclave Conditions [5] | litions ^[5] 121°C at 2 ATM,
100% RH for 168 hours | | | | ESD Sensitivity ^[6] | | > 8,000 V HBM
Class 3B JESD22-A114-D | | #### Notes for Table 4: - Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 10 for current de-rating. - Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%. - 3. LEDs are not designed to be reverse biased. - 4. Solder conditions per JEDEC 020c. See Reflow Soldering Profile Figure 3. - 5. Autoclave Conditions per JEDEC JESD22-A102-C. - LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ4-00B208 in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1. # Optical Characteristics @ T_c = 25°C Table 5: | Parameter | Symbol | Typical | Unit | | |---|------------------|---------|---------|--| | Luminous Flux (@ $I_F = 700 \text{mA}$) ^[1] | Ф۷ | 130 | lm | | | Luminous Flux (@ $I_F = 1000$ mA) ^[1] | Фу | 160 | lm | | | Dominant Wavelength ^[2] | λ_{D} | 460 | nm | | | Viewing Angle ^[3] | 20½ | 100 | Degrees | | | Total Included Angle [4] | Θ _{0.9} | 120 | Degrees | | ### Notes for Table 5: - 1. Luminous flux typical value is for all four LED dice operating concurrently at rated current. - 2. Observe IEC 60825-1 class 2 rating for eye safety. Do not stare into the beam. - 3. Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is $\frac{1}{2}$ of the peak value. - 4. Total Included Angle is the total angle that includes 90% of the total luminous flux. # Electrical Characteristics @ T_C = 25°C Table 6: | Parameter | Symbol | Typical | Unit | |---|-----------------------------|---------|-------| | Forward Voltage (@ $I_F = 700$ mA) [1] | V _F | 12.8 | V | | Forward Voltage (@ $I_F = 1000$ mA) [1] | V _F | 13.2 | V | | Temperature Coefficient of Forward Voltage $^{[1]}$ | $\Delta V_{F}/\Delta T_{J}$ | -11.6 | mV/°C | | Thermal Resistance
(Junction to Case) | RΘ _{J-C} | 2.8 | °C/W | Notes for Table 6: 1. Forward Voltage typical value is for all four LED dice connected in series. # **IPC/JEDEC Moisture Sensitivity Level** Table 7 - IPC/JEDEC J-STD-20 MSL Classification: | Soak R | | | | Soak Req | uirements | | |--------|-----------|-------------------|--------------|-----------------|------------|------------| | | Floo | r Life | Stan | dard | Accel | erated | | Level | Time | Conditions | Time (hrs) | Conditions | Time (hrs) | Conditions | | 1 | Unlimited | ≤ 30°C/
85% RH | 168
+5/-0 | 85°C/
85% RH | n/a | n/a | #### Notes for Table 7: # **Average Lumen Maintenance Projections** Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original light output remaining at a defined time period. Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Lumen Maintenance at 65,000 hours of operation at a forward current of 700 mA per die. This projection is based on constant current operation with junction temperature maintained at or below 125°C. ^{1.} The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer's exposure time (MET) between bake and bag and the floor life of maximum time allowed out of the bag at the end user of distributor's facility. # **Mechanical Dimensions (mm)** Figure 1: Package outline drawing. ### Notes for Figure 1: - 1. Unless otherwise noted, the tolerance = ± 0.20 mm. - 2. Thermal contact, Pad 9, is electrically neutral. # **Recommended Solder Pad Layout (mm)** Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad. ### Note for Figure 2a: - Unless otherwise noted, the tolerance = ± 0.20 mm. - This pad layout is "patent pending". # **Recommended Solder Mask Layout (mm)** Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad Note for Figure 2b: 1. Unless otherwise noted, the tolerance = \pm 0.20 mm. # **Recommended 8 mil Stencil Apertures Layout (mm)** Figure 2c: Recommended 8mil stencil apertures layout for anode, cathode, and thermal pad Note for Figure 2c: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. # **Reflow Soldering Profile** Figure 3: Reflow soldering profile for lead free soldering. # **Typical Radiation Pattern** Figure 4: Typical representative spatial radiation pattern. # **Typical Relative Spectral Power Distribution** Figure 5: Typical relative spectral power vs. wavelength @ $T_C = 25$ °C. # **Typical Dominant Wavelength Shift over Temperature** Figure 6: Typical dominant wavelength shift vs. case temperature. # **Typical Relative Light Output over Forward Current** Figure 7: Typical relative light output vs. forward current @ T_C = 25°C. # **Typical Normalized Radiant Flux over Temperature** Figure 8: Typical relative light output vs. case temperature. # **Typical Forward Current Characteristics** Figure 9: Typical forward current vs. forward voltage @ $T_C = 25$ °C. Note for Figure 9: 1. Forward Voltage curve assumes that all four LED dice are connected in series. # **Current De-rating** Figure 10: Maximum forward current vs. ambient temperature based on $T_{J(MAX)}$ = 150°C. Notes for Figure 10: - 1. Maximum current assumes that all four LED dice are operating concurrently at the same current. - 2. RO_{J-C} [Junction to Case Thermal Resistance] for the LZ4-00B208 is typically 2.8°C/W. - 3. $R\Theta_{J-A}$ [Junction to Ambient Thermal Resistance] = $R\Theta_{J-C}$ + $R\Theta_{C-A}$ [Case to Ambient Thermal Resistance]. # **Emitter Tape and Reel Specifications (mm)** Figure 11: Emitter carrier tape specifications (mm). Figure 12: Emitter Reel specifications (mm). # LZ4 MCPCB Family | Part number | Type of MCPCB | Diameter
(mm) | Emitter + MCPCB Thermal Resistance (°C/W) | Typical V _f
(V) | Typical I _f
(mA) | |-------------|---------------|------------------|---|-------------------------------|--------------------------------| | LZ4-4xxxxx | 1-channel | 19.9 | 2.8 + 1.1 = 3.9 | 14.0 | 700 | ### **Mechanical Mounting of MCPCB** - MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to substrate cracking and subsequently LED dies cracking. - To avoid MCPCB bending: - Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws. - Care must be taken when securing the board to the heat sink. This can be done by tightening three M3 screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will increase the likelihood of board bending. - o It is recommended to always use plastics washers in combinations with the three screws. - o If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after tightening (with controlled torque) and then re-tighten the screws again. ### Thermal interface material - To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when mounting the MCPCB on to the heat sink. - There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal epoxies. An example of such material is Electrolube EHTC. - It is critical to verify the material's thermal resistance to be sufficient for the selected emitter and its operating conditions. ### Wire soldering - To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150°C. Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is recommended to use a solder iron of more than 60W. - It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601) # LZ4-4xxxx # 1 channel, Standard Star MCPCB (1x4) Dimensions (mm) #### Notes: - Unless otherwise noted, the tolerance = ± 0.2 mm. - Slots in MCPCB are for M3 or #4-40 mounting screws. - LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces. - LED Engin recommends thermal interface material when attaching the MCPCB to a heatsink - The thermal resistance of the MCPCB is: ROC-B 1.1°C/W ### **Components used** MCPCB: HT04503 (Bergquist) ESD chips: BZX585-C30 (NXP, for 4 LED dies in series) | Pad layout | | | | | | | |------------|--------------|------------|-----------|--|--|--| | Ch. | MCPCB
Pad | String/die | Function | | | | | 1 | 1, 2, 3 | 1/ABCD | Cathode - | | | | | 1 | 4, 5 | 1/ABCD | Anode + | | | | ### **Company Information** LED Engin, Inc., based in California's Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient lighting experiences. The LuxiGen™ Platform — an emitter and lens combination or integrated module solution, delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin's packaging technologies lead the industry with products that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient solid state lighting solutions. LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions. LED Engin reserves the right to make changes to improve performance without notice. Please contact sales@ledengin.com or (408) 922-7200 for more information. Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! ### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331