

AUTOMOTIVE

COMPLIANT

(5-2008)

TELUX LED

DESCRIPTION

The TELUX series is a clear, non diffused LED for applications where supreme luminous flux is required.

It is designed in an industry standard 7.62 mm square package utilizing highly developed super bright, AllnGaP technology.

The supreme heat dissipation of TELUX allows applications at high ambient temperatures.

All packing units are binned for luminous flux, forward voltage and color to achieve the most homogeneous light appearance in application.

PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: TELUXProduct series: power

Angle of half intensity: ± 45°

FEATURES

- High luminous flux
- Supreme heat dissipation: RthJP is 90 K/W
- High operating temperature:
 T_{amb} = 40 °C to + 110 °C
- Meets SAE and ECE color requirements for the automobile industry for color red
- · Packed in tubes for automatic insertion
- Luminous flux, forward voltage and color categorized for each tube
- Small mechanical tolerances allow precise usage of external reflectors or lightguides
- Compatible with wave solder processes according to CECC 00802
- ESD-withstand voltage: up to 2 kV according to JESD 22-A114-B
- AEC-Q101 qualified
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Exterior lighting
- Tail-, stop- and, turn signals of motor vehicles
- Traffic light and signs

PARTS TABLE												
PART COLOR		LUMINOUS FLUX (mlm)		at I _F	WAVELENGTH (nm)		FORWARD VOLTAGE (V)			TECHNOLOGY		
		MIN.	TYP.	MAX.	(mA)	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
VLWY9930	Yellow	4000	1	12 200	70	585	592	597	1.83	2.2	3.03	AllnGaP on Si
VLWY9932	Yellow	6000	-	12 200	70	587	592	597	1.95	2.2	2.67	AllnGaP on Si

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage (1)		V_{R}	10	V
DC forward current	T _{amb} ≤ 85 °C	I _F	70	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.1	А
Power dissipation		P_V	212	mW
Junction temperature		T _j	125	°C
Operating temperature range		T _{amb}	- 40 to + 110	°C
Storage temperature range		T _{stg}	- 40 to + 110	°C
Soldering temperature	t ≤ 5 s, 1.5 mm from body preheat temperature 100 °C/30 s	T _{sd}	260	°C
Thermal resistance junction/ambient	With anode heatsink of 70 mm ²	R_{thJA}	200	K/W
Thermal resistance junction/pin		R _{thJP}	90	K/W

Note

(1) Driving the LED in reverse direction is suitable for a short term application

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}$ C, unless otherwise specified) VLWY9930, VLWY9932, YELLOW							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Total flux	L = 70 mA B = 200 KAN	VLWY9930	φ _V	4000	-	12 200	mlm
Total llux	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ K/W}$	VLWY9932	φ _V	6000	=	12 200	mlm
Luminous intensity/total flux	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ K/W}$		I_V/ϕ_V	-	0.7	-	mcd/mlm
Deminant wavelength	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ K/W}$	VLWY9930	λ_{d}	585	592	597	nm
Dominant wavelength		VLWY9932	λ_{d}	587	592	597	nm
Peak wavelength	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ K/W}$		λ_{p}	-	594	-	nm
Angle of half intensity	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ K/W}$		φ	-	± 45	-	deg
Total included angle	90 % of total flux captured		Φ0.9 V	-	100	-	deg
Company voltage	I _F = 70 mA, R _{thJA} = 200 K/W	VLWY9930	V _F	1.83	2.2	3.03	V
Forward voltage		VLWY9932	V _F	1.95	2.2	2.67	V
Reverse voltage			V_R	10	20	-	V
Temperature coefficient of λ_{dom}	I _F = 70 mA		$T_C \lambda_{dom}$	-	0.1	-	nm/K
Temperature coefficient of V _F	I _F = 70 mA, T > - 25 °C		T _{CVF}	=	- 2	-	mV/K

LUMINOUS FLUX CLASSIFICATION					
GROUP	LUMINOUS FLUX (mlm)				
	MIN.	MAX.			
Н	4000	6100			
I	5000	7300			
K	6000	9700			
L	7000	12 200			

Note

 Luminous flux is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each tube (there will be no mixing of two groups on each tube).

In order to ensure availability, single brightness groups will be not orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped in any one tube.

In order to ensure availability, single wavelength groups will not be orderable.

COLOR CLASSIFICATION					
GROUP	DOMINANT WAVELENGTH (nm)				
GROOP	MIN.	MAX.			
0	585	588			
1	587	591			
2	589	594			
3	592	597			

Note

 Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± 1 nm.

FORWARD VOLTAGE CLASSIFICATION					
GROUP	FORWARD VOLTAGE (V)				
GROOP	MIN.	MAX.			
Y	1.83	2.07			
Z	1.95	2.19			
0	2.07	2.31			
1	2.19	2.43			
2	2.31	2.55			
3	2.43	2.67			
4	2.55	2.79			
5	2.67	2.91			
6	2.79	3.03			

Note

• Voltages are tested at a current pulse duration of 1 ms.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

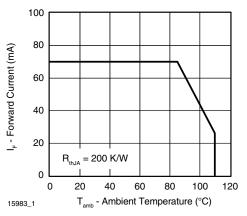


Fig. 1 - Forward Current vs. Ambient Temperature

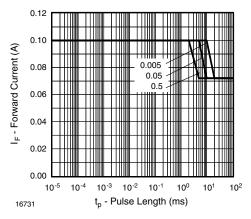


Fig. 2 - Forward Current vs. Pulse Length

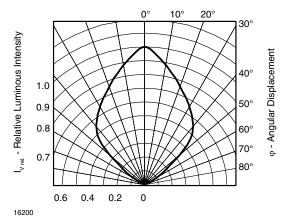


Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

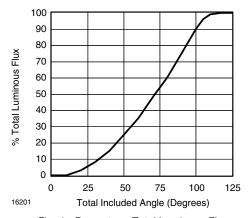


Fig. 4 - Percentage Total Luminous Flux vs. Total Included Angle for 90° Emission Angle

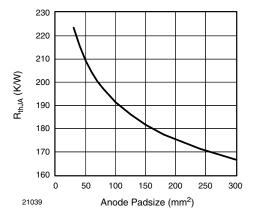
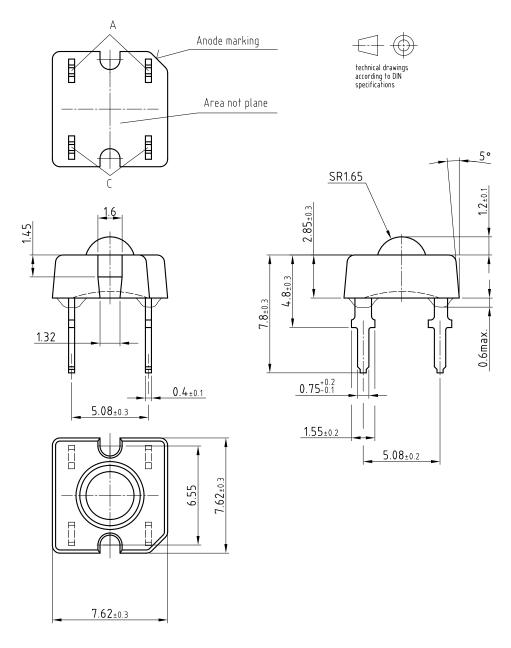
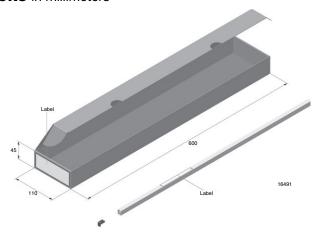
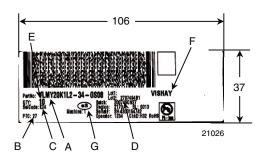



Fig. 5 - Thermal Resistance Junction Ambient vs. Anode Padsize

PACKAGE DIMENSIONS in millimeters

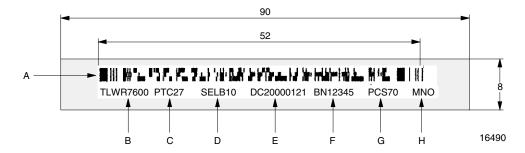


Drawing-No.: 6.544-5392.01-4

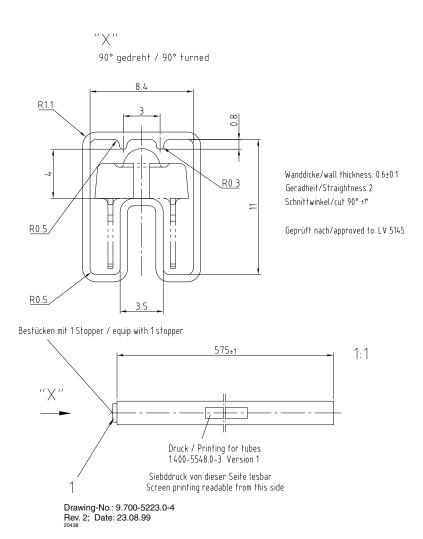

Issue: 1; 22.01.08

21041

FAN FOLD BOX DIMENSIONS in millimeters



LABEL OF FAN FOLD BOX (example)


- A. Type of component
- B. PTC = manufacturing plant
- C. SEL selection code (bin):
 - e.g.: K2 = code for luminous intensity group 4 = code for color group
- D. Batch/date code year/week
- E. Total quantity
- F. Company code
- G. Code for lead (Pb)-free classification (e3)

EXAMPLE FOR TELUX TUBE LABEL DIMENSIONS in millimeters

- A. Bar code
- B. Type of component
- C. Manufacturing plant
- D. SEL selection code (bin):
 - digit 1 code for luminous flux group
 - digit 2 code for dominant wavelength group
 - digit 3 code for forward voltage group
- E. Date code
- F. Batch no.
- G. Total quantity
- H. Company code

TUBE WITH BAR CODE LABEL DIMENSIONS in millimeters

Drawing Proportions not Scaled

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.


Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331