3.3 VOLT TIME SLOT INTERCHANGE DIGITAL SWITCH

FEATURES:

- 32 serial input and output streams
- $4,096 \times 4,096$ channel non-blocking switching at $8.192 \mathrm{Mb} / \mathrm{s}$
- Accepts data streams at $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$ or $8.192 \mathrm{Mb} / \mathrm{s}$
- Per-channel Variable Delay Mode for low-latency applications
- Per-channel Constant Delay Mode for frame integrity applications
- Automatic identification of ST-BUS ${ }^{\circledR}$ and GCl serial streams
- Automatic frame offset delay measurement
- Per-stream frame delay offset programming
- Per-channel high impedance output control
- Per-channel processor mode to allow microprocessor writes to TX streams
- Direct microprocessor access to all internal memories
- Memory block programming for quick set-up
- IEEE-1149.1 (JTAG) Test Port
- Internal Loopback for testing
- Available in 144-pin Thin Quad Flatpack (TQFP) and 144-pin Ball Grid Array (BGA) packages
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- $3.3 \mathrm{~V} \mathrm{I/O}$ with 5 V tolerant inputs and TTL compatible outputs

DESCRIPTION:

The IDT72V70840 has a non-blocking switch capacity of $1,024 \times 1,024$ channels at $2.048 \mathrm{Mb} / \mathrm{s}, 2,048 \times 2,048$ channels at $4.096 \mathrm{Mb} / \mathrm{s}$, and $4,096 \mathrm{x}$ 4,096 channels at $8.192 \mathrm{Mb} / \mathrm{s}$. With 32 inputs and 32 outputs, programmable per stream control, and a variety of operating modes the IDT72V70840 is designed for the TDM time slot interchange function in either voice or data applications.

Some of the main features of the IDT72V70840 are low power 3.3 Volt operation, automatic ST-BUS ${ }^{\boxplus} / \mathrm{GCl}$ sensing, memory block programming, simple microprocessor interface, one cycle directinternal memory accesses,

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

NOTE:

1. All I/O pins are 5 V tolerant except for TMS, TDI and $\overline{\mathrm{TRST}}$.

PIN DESCRIPTION

SYMBOL	NAME	I/0	DESCRIPTION
GND	Ground.		Ground Rail.
Vcc	Vcc		+3.3 Volt Power Supply.
TX0-31	TX Output 0 to 31 (Three-state Outputs)	0	Serial data output stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$ or $8.192 \mathrm{Mb} / \mathrm{s}$.
RX0-31	RX Input 0 to 31	1	Serial data input stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$ or $8.192 \mathrm{Mb} / \mathrm{s}$.
Foi	Frame Pulse	1	This input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS ${ }^{\circledR}$ and GCl specifications.
FE/HCLK	Frame Evaluation/ HCLK Clock	1	When LOW, this pin is the frame measurement input. When HIGH, the HCLK (4.096 MHZ clock) is required for frame alignment in the wide frame pulse (WFP) mode. There is no internal pull-up or pull-down. If this pin is unused, an external pull-up or pull-down must be provided.
CLK	Clock	1	Serial clock for shifting data in/out on the serial streams (RX/TX 0-31). This input accepts a 4.096 MHz clock when data streams @ $2.048 \mathrm{Mb} / \mathrm{s}$, a 8.192 MHz clock when data streams @ $4.096 \mathrm{Mb} / \mathrm{s}$, a 16.384 MHz clock when data streams @ $8.192 \mathrm{Mb} / \mathrm{s}$.
TMS	Test Mode Select	1	JTAG signal that controls the state transitions of the TAP controller. This pin is pulled HIGH by an internal pull-up when not driven.
TDI	Test Serial Data In	1	JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up when not driven.
TDO	Test Serial Data Out	0	JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-impedance state when JTAG scan is not enabled.
TCK	Test Clock	1	Provides the clock to the JTAG test logic.
TRST	Test Reset	1	Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-reset state. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, or held LOW, to ensure that the IDT72V70840 is in the normal functional mode.
$\overline{\text { RESET }}$	Device Reset (Schmitt Trigger Input)	1	This input (active LOW) puts the IDT72V70840 in its reset state that clears the device internal counters, registers and brings TX0-31 and microport data outputs to a high-impedance state. The time constant for a power up reset circuit must be a minimum of five times the rise time of the power supply. In normal operation, the RESET pin must be held LOW for a minimum of 100 ns to reset the device.
WFPS	Wide Frame Pulse Select	1	When 1, enables the wide frame pulse (SFP) Frame Alignment interface. When 0 , the device operates in ST-BUS ${ }^{\circledR} / \mathrm{GCl}$ mode.
$\overline{\text { DS }}$	Data Strobe	1	This active LOW input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations.
R/W	Read/Write	1	This input controls the direction of the data bus lines during a microprocessor access.
$\overline{\text { CS }}$	Chip Select	,	Active LOW input used by a microprocessor to activate the microprocessor port of IDT72V70840.
A0-13	Address Bus 0 to 13	1	These pins allow direct access to Connection Memory, Data Memory and internal control registers.
D0-15	Data Bus 0-15	1/0	These pins are the data bits of the microprocessor port.
DTA	Data Transfer Acknowledgment	0	This active LOW signal indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is in high-impedance.
ODE	Output Drive Enable	1	This is the output enable control for the TXO-31 serial outputs. When ODE input is LOW and the OSB bit of the CR register is LOW, TXO-31 are in a high-impedance state. If this input is HIGH, the TXO-31 output drivers are enabled. However, each channel may still be put into a high-impedance state by using the per channel control bit in the connection memory.

DECRIPTION (CONTINUED)

JTAG TestAccess Port(TAP) and perstream programmable inputoffsetdelay, variable or constant throughputmodes, internal loopback, outputenable, and ProcessorMode.

The IDT72V70840 is capable of switching up to $4,096 \times 4,096$ channels withoutblocking. Designed to switch $64 \mathrm{Kbit} / \mathrm{PCM}$ orNx64 Kbit/s data, the device maintains frame integrity in data applications and minimizes throughput delay for voice applications on a per channel basis.

The 32 serial input streams (RX) of the IDT72V70840 can be run up to $8.192 \mathrm{Mb} /$ sallowing 128 channels per 125μ sframe. The data rates ontheoutput streams (TX) are identical to those on the input stream.

With two main operating modes, Processor Mode and Connection Mode, the IDT72V70840 can easily switch data from incoming serial streams (Data Memory) or from the controlling microprocessor (Connection Memory). As control andstatus information iscritical indatatransmission, the ProcessorMode is especially useful whenthere are multiple devices sharing the input and output streams.

With data coming from multiple sources and through different paths, data entering the device is often delayed. To handle this problem, the IDT72V70840 has a frame evaluation feature to allow individual streams to be offset from the frame pulse in half clock-cycle intervals up to +4.5 clock cycles.

The IDT72V70840 also provides a JTAG test access port, an internal loopback feature, memory block programming, a simple microprocessor interface and automatic ST-BUS ${ }^{\oplus} / \mathrm{GCl}$ sensing to shorten setup time, aid in debugging and ease use of the device without sacrificing capabilities.

FUNCTIONAL DESCRIPTION

DATA ANDCONNECTIONMEMORY

All data that comes in through the RXinputs gothrough a serial-to-parallel conversion before being stored into internal Data Memory. The 8 KHz frame pulse ($\overline{\mathrm{FOi}})$ is used to mark the 125μ s frame boundaries and to sequentially address the input channels in Data Memory.

DataoutputontheTXstreams may come fromeithertheSerial InputStreams (DataMemory) orfrom the microprocessor (Connection Memory). Inthe case that RXinput datais to beoutput, the addresses inconnectionmemory are used to specify a stream and channel of the input. The connection memory is setup in such a way that each location corresponds to an output channel for each particularstream. Inthatway, morethan onechannel canoutputthe samedata.

In Processor Mode, the microprocessor writes data to the connection memory locations corresponding to the stream and channel that is to be output. The lowerhalf(8leastsignificantbits) of the connection memory is outputevery frame until the microprocessor changes the data or mode of the channel. By using this ProcessorMode capability, the microprocessorcan access inputand outputtime-slots on a perchannel basis.

The four most significantbits of the connection memory are used to control per channel functions of the out put streams. Specifically, there are bits for Processor or Connection mode, Constant or Variable delay, enables or disables of output drivers, and controls for the Loopback function.

If the perchannel OE is setto zero, only that particular channel (8-bits) will beinthehigh-impedancestate. Ifhowever, theODEinputpinislow ortheOutput Standby Bit (OSB) in the Control Register is low, all of the outputs will be in a high-impedance state even if a particular channel in connection memory has enabledtheoutputforthatchannel. In otherwords, theODEpinand OSB control bit are master output enables for the device (Table 3).

SERIAL DATA INTERFACE TIMING

The master clock frequency mustalways be twice the data rate, e.g. fora serial data rates of $2.048 \mathrm{Mb} / \mathrm{s}$, the master clock (CLK) must be at 4.096 MHz . The input and output stream data rates will always be identical. See control register bits DR1-0 description (Table5) for data and clock rate selections.

The IDT72V70840 provides two differentinterfacetiming modes, ST-BUS ${ }^{\circledR}$ orGCI. The IDT72V70840 automatically detectsthe presence of aninputframe pulse and identifies it as either ST-BUS ${ }^{\circledR}$ or GCI . In ST-BUS ${ }^{\circledR}$ format, every second falling edge of the master clock marks a bit boundary and the data is clocked in on the rising edge of CLK, three quarters of the way into the bit cell. In GCI format, every second rising edge of the master clock marks the bit boundary and data is clocked in on the falling edge of CLK at three quarters of the way into the bit cell.

INPUT FRAME OFFSET SELECTION

Inputframe offsetselection allows the channel alignment of individual input streamstobeoffsetwithrespecttotheoutputstreamchannelalignment(i.e. $\overline{\mathrm{FOi}})$. Although all input data comes in at the same speed, delays can be caused by variable path serial backplanes and variable path lengths which may be implemented in large centralized and distributed switching systems. Because datais often delayedthisfeature is useful in compensating forthe skewbetween clocks.

Each inputstream can have its own delay offset value by programming the frame input offset registers (FOR, Table 8). The maximum allowable skew is +4 masterclock (CLK) periodsforward with a resolution of $1 / 2$ clock period. The outputframe offsetcannotbe offsetoradjusted.

SERIAL INPUT FRAME ALIGNMENT EVALUATION

The IDT72V70840 provides the frame evaluation (FE) input to determine different data input delays with respectto the frame pulse $\overline{\mathrm{FO}}$.

Ameasurement cycle is started by setting the startframeevaluation (SFE) bitlowforatleastoneframe. WhentheSFEbitintheControl Registerischanged from low to high, the evaluation starts. Two frames later, the complete frame evaluation (CFE) bit of the frame alignment register (FAR) changes from low to high to signal that a valid offsetmeasurement is ready to be read from bits 0 to 11 of the FAR register. The SFE bit must be set to zero before a new measurement cycle is started.

InST-BUS ${ }^{\circledR}$ mode, the falling edge of the frame measurement signal (FE) is evaluatedagainst the fallingedge of the ST-BUS ${ }^{\oplus}$ frame pulse. InGCImode, the risingedge ofFE is evaluated againstthe risingedge ofthe GCIframepulse. See Table 7 and Figure 1 for the description of the frame alignment register.

MEMORYBLOCK PROGRAMMING

The IDT72V70840 provides users withthe capability of initializing theentire connection memoryblockintwoframes. Tosetbits 12 to 15 of every connection memory location, first program the desired pattern in bits 5 to 8 of the Control Register.

The block programming mode is enabled by setting the memory block program (MBP) bit of the control registerhigh. When the block programming enable (BPE) bit of the Control Register is setto high, the block programming data will be loaded into the bits 12 to 15 of every connection memory location. The otherconnection memory bits (bit0 to bit 11) are loaded with zeros. When the memory block programming is complete, the device resets the BPE bitto zero.

LOOPBACKCONTROL

Theloopbackcontrol(LPBK) bitofeach connectionmemory locationallows the TX outputdatato belooped backed internally to the RXinputfordiagnostic purposes.

If the LPBK bit is high, the associated TX output channel data is internally looped back to the RX input channel (i.e., data from TXn channel m routes to the RXn channel m internally); if the LPBK bit is low, the loopback feature is disabled. For proper per-channel loopback operation, the contents of frame delay offset registers mustbe setto zero.

DELAY THROUGH THE IDT72V70840

The switching of information from the inputserial streamstotheoutputserial streams results in a throughput delay. The device can be programmed to performtime-slotinterchangefunctionswith differentthroughputdelay capabilities on a per-channel basis. Forvoice applications, variablethroughput delay is bestasitensure minimum delay betweeninputand output data. In wideband data applications, constantthroughput delay is bestas the frame integrity of the information is maintained throughthe switch.

The delay through the device varies according to the type of throughput delay selected in the $\overline{\mathrm{V}} / \mathrm{C}$ bit of the connection memory.

VARIABLE DELAY MODE (V̄/C BIT = 0)

Inthis mode, the delay is dependentonly on the combination of source and destination channels and is independent of input and output streams. The minimum delay achievable in the IDT72V70840 is three time-slots. If the input channel datais switched to the same outputchannel (channel n, framep), it will be output in the following frame (channeln, framep+1). The same is true ifthe input channel n is switched to output channel $n+1$ or $n+2$. If the input channel n is switched to outputchannel $n+3, n+4, \ldots$, the new output data will appear in the same frame. Table2shows thepossible delays forthe IDT72V70840 inthe variable delay mode.

CONSTANT DELAY MODE ($\overline{\mathrm{V}} / \mathrm{C}$ BIT = 1)

Inthis mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer. Inputchannel data is written into the data memory buffers during frame n will be read out during frame $n+2$. In the IDT72V70840, the minimum throughput delay achievable in the constant delay mode will be one frame. For example, when inputtime-slot31 is switched to outputtime-slot0. The maximum delay of 94 time-slots of delay occurs when time-slot 0 in aframe is switched to time-slot31 in the frame.

MICROPROCESSOR INTERFACE

TheIDT72V70840's microprocessor interface looks like a standard RAM interface to improve integration into a system. With a 12-bit address bus and a 16-bitdatabus, readandwrites are mappeddirectly into DataandConnection memories and require only one cycle to access. By allowing the internal memoriestobe randomly accessedinonecycle, the controllingmicroprocessor has more time to manage other peripheral devices and can more easily and quickly gather information and setup the switch paths.

Table 4 shows the mapping of the addresses into internal memory blocks and Table 5 shows the Control Register information.

MEMORY MAPPING

The address bus on the microprocessor interface selects the internal registers and memories of the IDT72V70840.

Thetwo mostsignificantbits of the addressselectbetweenthe registers, Data Memory, and ConnectionMemory. IfA13andA12 areHIGH, A11-A0 are used toaddress the DataMemory. If A13is HIGH andA12 isLOW, A11-A0 are used to address Connection Memory. If A13 is LOW and A12 is HIGHA11-A0 are usedtoselecttheControl Register, Frame AlignmentRegister, and FrameOffset Registers. See Table 4 for mappings.

As explained inthe Serial Data Interface Timing and Switching Configurations sections, after system power-up, the Control Register should be programmed immediately to establishthe desired switching configuration.

The dataintheControl Registerconsists ofthe MemoryBlock Programming bit (MBP), the Block Programming Data (BPE) bits, the Begin Block ProgrammingEnable (BPE), theOutputStand By, StartFrameEvaluation, and DataRate Selectbits. As explained inthe Memory Block Programming section, the BPE begins the programming if the MBP bit is enabled. This allows the entire connection memory blocktobeprogrammed withtheBlockProgramming Data bits. If the ODE pin is low, the OSB bit enables (if high) or disables (iflow) all TX outputdrivers. Ifthe ODE pin is high, the contents of the OSB bitis ignored and all TX output drivers are enabled.

CONNECTION MEMORY CONTROL

If the ODE pin or the OSB bitishigh, the OE bit of each connection memory location controls the output drivers-enables (if high) or disables (if low). See Table 3 for detail.

TheProcessorChannel(PC)bitoftheConnectionMemory selects between ProcessorMode andConnectionMode. Ifhigh, the contents oftheConnection Memory are output on the TX streams. If low, the Stream Address Bit (SAB) and the Channel Address Bit (CAB) of the Connection Memory defines the source information (stream and channel) of the time-slotthat will be switched to the outputfrom Data Memory.

Also in the Connection Memory is the $\overline{\mathrm{V}} / \mathrm{C}$ (Variable/Constant Delay) bit. Each Connection Memory location allows the per-channel selection between variable and constant throughput delay modes.

If the LPBK bit is high, the associated TX output channel data is internally looped back to the RX inputchannel (i.e., RXnchannel m data comes fromthe TXn channel m). If the LPBK bit is low, the loopback feature is disabled. For properper-channel loopback operation, the contents of theframe delay offset registers mustbe setto zero.

INITIALIZATION OF THE IDT72V70840

After power up, the state of the connection memory is unknown. As such, the outputs should beputinhigh impedance by holding the ODE low. Whilethe ODE is low, the microprocessor can initialize the device, program the active paths, and disable unused outputs by programming the OE bit in connection memory. Once the device is configured, the ODE pin (or OSB bit depending on initialization) can be switched.

TABLE 1 - CONSTANT THROUGHPUT DELAY VALUE

Input Rate	Delay for Constant Throughput Delay Mode (\mathbf{m} - output channel number) $(\mathrm{n}$ - input channel number)
$2.048 \mathrm{Mb} / \mathrm{s}$	$32+(32-\mathrm{n})+\mathrm{m}$ time-slots
$4.096 \mathrm{Mb} / \mathrm{s}$	$64+(64-\mathrm{n})+\mathrm{m}$ time-slots
$8.192 \mathrm{Mb} / \mathrm{s}$	$128+(128-\mathrm{n})+\mathrm{m}$ time-slots

TABLE 2 - VARIABLE THROUGHPUT DELAY VALUE

Input Rate	Delay for Variable Throughput Delay Mode (m - output channel number; n - input channel number)		
	$\mathrm{m}<\mathrm{n}$	$\mathrm{m}=\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$	$\mathrm{m}>\mathrm{n}+2$
$2.048 \mathrm{Mb} / \mathrm{s}$	32-(n-m) time-slots	(m-n+32) time-slots	(m-n) time-slots
$4.096 \mathrm{Mb} / \mathrm{s}$	64-(n-m) time-slots	(m-n+64) time-slots	(m-n) time-slots
$8.192 \mathrm{Mb} / \mathrm{s}$	128-(n-m) time-slots	($m-\mathrm{n}+128$) time-slots	(m-n) time-slots

TABLE 3 - OUTPUT HIGH IMPEDANCE CONTROL

OE bit in Connection Memory	ODE pin	OSB bit in CR Register	TX Stream Output Status
0	Don'tCare	Don'tCare	PerChannel High-Impedance
1	0	0	High-Impedance
1	0	1	Enable
1	1	0	Enable
1	1	1	Enable

TABLE 4 - INTERNAL REGISTER AND ADDRESS MEMORY MAPPING

A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	RW	Location
1	1	STA4	STA3	STA2	STA1	STA0	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R	Data Memory
1	0	STA4	STA3	STA2	STA1	STA0	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R/W	Connect. Memory
0	1	0	0	0	0	x	x	x	x	x	x	x	x	R/W	Control Register
0	1	0	0	0	1	x	x	x	x	x	x	x	x	R/W	Frame Align Register
0	1	0	0	1	0	x	x	x	x	x	x	x	x	R/W	FOR0
0	1	0	0	1	1	x	x	x	x	x	x	x	x	R/W	FOR1
0	1	0	1	0	0	x	x	x	x	x	x	x	x	R/W	FOR2
0	1	0	1	0	1	x	x	x	x	x	x	x	x	R/W	FOR3
0	1	0	1	1	0	x	x	x	x	x	x	x	x	R/W	FOR4
0	1	0	1	1	1	x	x	x	x	x	x	x	x	R/W	FOR5
0	1	1	0	0	0	x	x	x	x	x	x	x	x	R/W	FOR6
0	1	1	0	0	1	x	x	x	x	x	x	x	x	R/W	FOR7

TABLE 5 - CONTROL REGISTER (CR) BITS

TABLE 6 - CONNECTION MEMORY BITS

TABLE 7 - FRAME ALIGNMENT REGISTER (FAR) BITS

(FD[10:0] = 09 H)
(FD11 = 1, sample at CLK HIGH phase)
Figure 1. Example for Frame Alignment Measurement

TABLE 8 - FRAME INPUT OFFSET REGISTER (FOR) BITS

$$
\text { Reset Value: } \quad 0000 \mathrm{H} \text { for all FOR registers. }
$$

FOR1 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OF112	OF111	OF110	DLE11	OF102	OF101	OF100	DLE10	OF92	OF91	OF90	DLE9	OF82	OF81	OF80	DLE8

FOR2 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OF312	OF311	OF310	DLE31	OF142	OF141	OF140	DLE14	OF132	OF131	OF130	DLE13	OF122	OF121	OF120	DLE12

FOR3 Register

FOR5 Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OF272	OF271	OF270	DLE27	OF262	OF261	OF260	DLE26	OF252	OF251	OF250	DLE25	OF242	OF241	OF240	DLE24

FOR6 Register

FOR7 Register

Name ${ }^{(1)}$	Description	
$\begin{aligned} & \text { OFn2, OFn1, OFn0 } \\ & \text { (Offset Bits 2, } 1 \text { \& 0) } \end{aligned}$	These three bits define how long the serial interface receiver takes to recognize and store bit 0 from the RX input pin: i.e., to start a new frame. The inputframe offset can be selectedto +4.5 clock periods from the point where the external frame pulse input signal is applied to the $\overline{\mathrm{FOi}}$ input of the device. See Figure 1.	
DLEn	ST-BUS ${ }^{\circledR}$ mode: (DataLatchEdge) GCI mode:	$D L E n=0$, if clock rising edge is at the $3 / 4$ point of the bit cell. DLEn $=1$, if when clock falling edge is at the $3 / 4$ of the bit cell. DLEn $=0$, if clock falling edge is at the $3 / 4$ point of the bit cell. DLEn $=1$, if when clock rising edge is at the $3 / 4$ of the bit cell.

NOTE:

1. n denotes an input stream number from 0 to 31 .

TABLE 9 - OFFSET BITS (OFn2, OFn1, OFn0, DLEn) \& FRAME DELAY BITS (FD11, FD2-0)

InputStream Offset	Measurement Resultfrom Frame Delay Bits				Corresponding OffsetBits			
	FD11	FD2	FD1	FDO	OFn2	OFn1	OFn0	DLEn
Noclock periodshift(Default)	1	0	0	0	0	0	0	0
+ 0.5 clock period shift	0	0	0	0	0	0	0	1
+ 1.0 clock period shift	1	0	0	1	0	0	1	0
+ 1.5 clock period shift	0	0	0	1	0	0	1	1
+2.0 clock period shift	1	0	1	0	0	1	0	0
+2.5 clock period shift	0	0	1	0	0	1	0	1
+3.0 clock period shift	1	0	1	1	0	1	1	0
+3.5 clock period shift	0	0	1	1	0	1	1	1
+4.0 clock period shift	1	1	0	0	1	0	0	0
+4.5 clock period shift	0	1	0	0	1	0	0	1

Figure 2. Examples for Input Offset Delay Timing

JTAG SUPPORT

The IDT72V70840 JTAG interface conforms to the Boundary-Scan standard IEEE-1149.1. This standard specifies a design-for-testability technique called Boundary-Scan test (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

TEST ACCESS PORT (TAP)

The Test Access Port (TAP) provides access to the test functions of the IDT72V70840. It consists of three input pins and one output pin.

- Test Clock Input (TCK)

TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remain independent. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
-Test Mode Select Input (TMS)
The logic signals received at the TMS input are interpreted by the TAP Controller to control the test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vcc when it is not driven from an external source.
-Test Data Input (TDI)
Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vcc when it is not driven from an external source.
-TestData Output(TDO)
Depending on the sequence previously applied to the TMS input, the contents of eitherthe instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCK pulses. When no datais shifted throughthe boundary scancells, the TDO driver is set to a high impedance state.

- Test Reset (TRST)

Reset the JTAG scan structure. This pin is internally pulled to Vcc.

INSTRUCTION REGISTER

In accordance with the IEEE-1149.1 standard, the IDT72V70840 uses public instructions. The IDT72V70840 JTAG Interface contains a two-bit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. Subsequently, theinstructionsaredecodedtoachievetwobasicfunctions:toselectthetestdata registerthatmay operate while the instruction is current, and to definethe serial testdata registerpath, which is used to shift databetween TDI andTDO during data register scanning. See Table below for Instruction decoding.

Value	Instruction	Function
11	Bypass	Select Bypass Register
10	Sample/Preload	SelectBoundary Scan Register
01	Sample/Preload	SelectBoundary Scan Register
00	EXTEST	SelectBoundary Scan Register

JTAG Instruction Register Decoding

TESTDATA REGISTER

As specified inIEEE-1149.1, the IDT72V70840JTAG Interface contains two testdata registers:
-The Boundary-Scan register
The Boundary-Scan registerconsists of a series of Boundary-Scan cells arranged to form ascan path around the boundary of the IDT72V70840 core logic.
-The Bypass Register
The Bypass register is a single stage shift registerthat provides a one-bit path from TDI to its TDO. The IDT72V70840 boundary scan registerbits are shown in Table 10. Bit0 is the firstbitclocked out. All three-state enablebits are activehigh.

TABLE 10 - BOUNDARY SCAN REGISTER BITS

Device Pin	Boundary Scan Bit 0 to bit 167		
	Three-State Control	Output Scan Cell	Input Scan Cell
ODE			0
RESET			1
CLK			2
FOi			3
FE/HCLK			4
WFPS			5
$\overline{\overline{D S}}$			6
$\overline{\mathrm{CS}}$			7
R/ \bar{W}			8
A0			9
A1			10
A2			11
A3			12
A4			13
A5			14
A6			15
A7			16
A8			17
A9			18
A10			19
A11			20
A12			21
A13			22
DTA		23	
D15	24	25	26
D14	27	28	29
D13	30	31	32
D12	33	34	35
D11	36	37	38
D10	39	40	41
D9	42	43	44
D8	45	46	47
D7	48	49	50
D6	51	52	53
D5	54	55	56
D4	57	58	59
D3	60	61	62
D2	63	64	65
D1	66	67	68
D0	69	70	71
TX31	72	73	
TX30	74	75	
TX29	76	77	
TX28	78	79	
TX27	80	81	
TX26	82	83	
TX25	84	85	
TX24	86	87	
RX31			88
RX30			89
RX29			90
RX28			91

Device Pin	Boundary Scan Bit 0 to bit 167		
	Three-State Control	Output Scan Cell	Input Scan Cell
RX27			92
RX26			93
RX25			94
RX24			95
TX23	96	97	
TX22	98	99	
TX21	100	101	
TX20	102	103	
TX19	104	105	
TX18	106	107	
TX17	108	109	
TX16	110	111	
RX23			112
RX22			113
RX21			114
RX20			115
RX19			116
RX18			117
RX17			118
RX16			119
TX15	120	121	
TX14	122	123	
TX13	124	125	
TX12	126	127	
TX11	128	129	
TX10	130	131	
TX9	132	133	
TX8	134	135	
RX15			136
RX14			137
RX13			138
RX12			139
RX11			140
RX10			141
RX9			142
RX8			143
TX7	144	145	
TX6	146	147	
TX5	148	149	
TX4	150	151	
TX3	152	153	
TX2	154	155	
TX1	156	157	
TX0	158	159	
RX7			160
RX6			161
RX5			162
RX4			163
RX3			164
RX2			165
RX1			166
RX0			167

APPLICATIONS

CREATING LARGE SWITCH MATRICES

To create a switch matrix with twice the capacity of a given TSIS device, four devices must be used. In the example below, four IDT72V70840, 4096×4096 channel capacity devices are used to create an 8192×8192 channel switch matrix.

As can be seen, Device \#1 and Device \#2 will receive the same incoming RX0-31 data and thus have the same contents in Data Memory. On the output
side, however Device \#1 is used to switch data out on to TX0-31 where as Device \#2 is usedto switch outon TX32-63. Like wise Device \#3and Device \#4 are used in the same way as Device \#1 and Device \#2 but switch RX32-63, to TX0-31 and TX32-63. Withthis configurationall possible combinations of input and output streams are possible. In short, Device \#1 is used to switch RX0-31 to TX0-31, Device \#2 to switch RX0-31 to TX32-63, Device \#3to switch RX3263 to TX0-31, and Device \#4 to switch RX32-63 to TX32-63.

Figure 3. Creating Larger Switch Matrices

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Min.	Max.	Unit
VCC	Supply Voltage	3.0	3.6	V
Vi	Voltage on Digital Inputs	$\mathrm{GND}-0.3$	5.3	V
IO	CurrentatDigital Outputs	-50	50	mA
TS	Storage Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
PD	Package PowerDissapation	-	2	W

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING

 CONDITIONS ${ }^{(1)}$| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Vcc | Positive Supply | 3.0 | 3.3 | 3.6 | V |
| VIH^{2} | Input HIGH Voltage | 2.0 | - | 5.3 | V |
| VIL | InputLOWVoltage | - | - | 0.8 | V |
| TOP | OperatingTemperature
 Commercial | -40 | 25 | +85 | ${ }^{\circ} \mathrm{C}$ |

NOTE:
1.Voltages are with respect to Ground unless otherwise stated.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter		Min.	Typ.	Max.	Units
ICC ${ }^{(2)}$	Supply Current	@ $2.048 \mathrm{Mb} / \mathrm{s}$		15	20	mA
		@ $4.096 \mathrm{Mb} / \mathrm{s}$	-	25	35	mA
		@ $8.192 \mathrm{Mb} / \mathrm{s}$	-	47	70	mA
IIL ${ }^{(3,4)}$	InputLeakage(inputpins)		-	-	50	$\mu \mathrm{A}$
$10 z^{(3,4)}$	High-impedanceLeakage		-	-	50	$\mu \mathrm{A}$
VoH ${ }^{(5)}$	Output HIGH Voltage		2.4	-	-	V
VoL ${ }^{(6)}$	OutputLOWVoltage		-	-	0.4	V

NOTES:

1. Voltages are with respect to ground (GND) unless otherwise stated.
2. Outputs unloaded.
3. $0 \leq \mathrm{V} \leq \mathrm{VCC}$.
4. Maximum leakage on pins (output or I / O pins in high-impedance state) is over an applied voltage (V).
5. $\mathrm{IOH}=10 \mathrm{~mA}$.
6. $\mathrm{IOL}=10 \mathrm{~mA}$.

AC ELECTRICAL CHARACTERISTICS-TIMING PARAMETER MEASUREMENT VOLTAGE LEVELS

Symbol	Rating	Level	Unit
VTT	TLThreshold	1.5	V
VHM	TTLRise/Fall Threshold Voltage HIGH	2.0	V
VLM	TTLRise/Fall Threshold VoltageLOW	0.8	V

S1 is open circuitexceptwhentesting output levels orhighimpedance states.

S2 is switchedto Vcc or GND whentesting outputlevels or highimpedance states.

Figure 4. Output Load

AC ELECTRICAL CHARACTERISTICS - FRAME PULSE AND CLK

Symbol	Parameter	Min.	Typ.	Max.	Units
tFPW ${ }^{(1)}$	Frame Pulse Width (ST-BUS® ${ }^{\circledR}$, GCI) Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \end{aligned}$	—	$\begin{aligned} & 295 \\ & 145 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
tFPS ${ }^{(1)}$	Frame Pulse Setup time before CLK falling (ST-BUS ${ }^{\text {® or GCI) }}$	5	-	-	ns
tFPH ${ }^{(1)}$	Frame Pulse Hold Time from CLK falling (ST-BUS ${ }^{\text {® }}$ or GCI)	10	-	-	ns
tCP(1)	CLK Period Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 190 \\ & 110 \\ & 58 \\ & \hline \end{aligned}$	—	$\begin{aligned} & 300 \\ & 150 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tCH ${ }^{(1)}$	CLK Pulse Width HIGH Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 75 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
tcL ${ }^{(1)}$	CLK Pulse Width LOW Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \end{aligned}$	—	$\begin{aligned} & 150 \\ & 75 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tr, tf	Clock Rise/Fall Time	-	-	10	ns
tHFPW ${ }^{(2)}$	Wide Frame Pulse Width Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	195	-	295	ns
tHFPS ${ }^{(2)}$	Frame Pulse Setup Time before HCLK falling	5	-	150	ns
thfPH ${ }^{(2)}$	Frame Pulse Hold Time from HCLK falling	10	-	150	ns
thCP(2)	HCLK (4.096 MHz) Period Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	190	-	300	ns
tHCH2)	HCLK (4.096 MHz) Pulse Width HIGH Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	85	-	150	ns
tHCL ${ }^{(2)}$	HCLK (4.096 MHz) Pulse Width LOW Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	85	-	150	ns
thr, thf	HCLK Rise/Fall Time	-	-	10	ns
tDIFF ${ }^{(3)}$	Delay between falling edge of HCLK and falling edge of CLK	-10	-	10	ns

NOTES:

1. WFPS Pin $=0$
2. WFPS Pin $=1$
3. WFPS Pin $=0$ or 1 .

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ - SERIAL STREAM (ST-BUS ${ }^{\circledR}$ and GCI)

Symbol	Parameter	Min.	Typ.	Max.	Units
tsIs	RXSetup Time	5	-	-	ns
tSIH	RX Hold Time	10	-	-	ns
tSOD	TX Delay - Active to Active @ $2.048 \mathrm{Mb} / \mathrm{s}$ © $4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$	-	—	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
tDz	TX Delay - Active to High-Z @ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ © $8.192 \mathrm{Mb} / \mathrm{s}$	—	—	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tZD	TX Delay - High-Z to Active @ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$	-	-	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tode	Output Driver Enable (ODE) Delay @ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$	—	—	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with $R_{L}(1 K)$, with timing corrected to cancel time taken to discharge $C_{L}(150 p F)$.

NOTE:

1. @ $2.048 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=$ ch 31 ,
@ $4.096 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=$ ch 63 ,
@ 8.192 Mb/s mode, last channel = ch 127.
Figure 5. ST-BUS ${ }^{\circledR}$ Timing

2. @ $2.048 \mathrm{Mb} / \mathrm{s}$ mode, last channel = ch 31 ,
@ $4.096 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=$ ch 63 ,
@ $8.192 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=$ ch 127.
Figure 6. GCI Timing

Figure 7. WFP Bus Timing (@ 8.192 Mb/s, when pin WFPS is HIGH)

Figure 8. Serial Output and External Control

Figure 9. Output Driver Enable (ODE)

AC ELECTRICAL CHARACTERISTICS - MICROPROCESSOR INTERFACE TIMING

Symbol	Parameter	Min.	Typ.	Max.	Units
tcss	CS Setup from DS falling	0	-	-	ns
trws	R/W Setup from DS falling	3	-	-	ns
tads	Address Setup from DS falling	2	-	-	ns
tcs H	CS Hold after DS rising	0	-	-	ns
trwh	R/W Hold after DS Rising	3	-	-	ns
tADH	Address Hold after DS Rising	2	-	-	ns
tDDR ${ }^{(1)}$	Data Setup from DTA LOW on Read	2	-	-	ns
tohr ${ }^{(1,2,3)}$	Data Hold on Read	10	15	25	ns
tosw	Data Setup on Write (FastWrite)	10	-	-	ns
tswo	Valid Data Delay on Write (Slow Write)	-	-	0	ns
tohw	Data Hold on Write	5	-	-	ns
taKD ${ }^{(1)}$	Acknowledgment Delay: Reading/WritingRegisters Reading/WritingMemory @ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$			$\begin{gathered} 30 \\ 345 \\ 200 \\ 120 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Аакн ${ }^{(1,2,3)}$	Acknowledgment Hold Time	-	-	20	ns
toss ${ }^{(4)}$	Data Strobe Setup Time	2	-	-	ns

NOTES:

1. $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
2. $R_{L}=1 K$
3. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
4. To achieve one clock cycle fast memory access, this setup time, tDSs should be met. Otherwise, worst case memory access operation is determined by takD.

Figure 10. Motorola Non-Mulitplexed Bus Timing

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

5/05/2000
6/08/2000
8/30/2000
01/24/2001
10/22/2001
1/04/2002
12/14/2006
10/06/2008
pg. 1
pgs. 1, 2, 3 and 19.
pgs. 2, 4, 6, 9, 11, 13, 14, 16, 17 and 19 .
pg. 14
pg. 1.
pgs. 1 and 15
pgs. 2 and 20.
pg. 3.

Стандарт Злектрон Связь

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:
Телефон: +7 8126271435
Электронная почта: sales@st-electron.ru
Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера H, помещение 100-Н Офис 331

