KSZ9031RNX

Gigabit Ethernet Transceiver

 with RGMII Support
General Description

The KSZ9031RNX is a completely integrated triple-speed (10Base-T/100Base-TX/1000Base-T) Ethernet physicallayer transceiver for transmission and reception of data on standard CAT-5 unshielded twisted pair (UTP) cable.
The KSZ9031RNX provides the Reduced Gigabit Media Independent Interface (RGMII) for direct connection to RGMII MACs in Gigabit Ethernet processors and switches for data transfer at 10/100/1000Mbps.
The KSZ9031RNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four differential pairs and by integrating an LDO controller to drive a low-cost MOSFET to supply the 1.2 V core.
The KSZ9031RNX offers diagnostic features to facilitate system bring-up and debugging in production testing and in product deployment. Parametric NAND tree support enables fault detection between KSZ9031 I/Os and the board. The LinkMD ${ }^{\circledR}$ TDR-based cable diagnostic identifies faulty copper cabling. Remote and local loopback functions verify analog and digital data paths.
The KSZ9031RNX is available in a 48-pin, lead-free QFN package (see "Ordering Information").
Data sheets and support documentation are available on Micrel's web site at: www.micrel.com.

Features

- Single-chip 10/100/1000Mbps IEEE 802.3 compliant Ethernet transceiver
- RGMII timing supports on-chip delay according to RGMII Version 2.0, with programming options for external delay and making adjustments and corrections to TX and RX timing paths
- RGMII with $3.3 \mathrm{~V} / 2.5 \mathrm{~V} / 1.8 \mathrm{~V}$ tolerant I/Os
- Auto-negotiation to automatically select the highest linkup speed (10/100/1000Mbps) and duplex (half/full)
- On-chip termination resistors for the differential pairs
- On-chip LDO controller to support single 3.3V supply operation - requires only one external FET to generate 1.2 V for the core
- Jumbo frame support up to 16 KB
- 125 MHz reference clock output
- Energy detect power-down mode for reduced power consumption when the cable is not attached
- Energy Efficient Ethernet (EEE) support with low-power idle (LPI) mode and clock stoppage for 100Base-TXI 1000Base-T and transmit amplitude reduction with 10Base-Te option
- Wake-on-LAN (WOL) support with robust custom-packet detection

Functional Diagram

[^0]Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Features (Continued)

- Programmable LED outputs for link, activity, and speed
- Baseline wander correction
- LinkMD TDR-based cable diagnostic to identify faulty copper cabling
- Parametric NAND tree support to detect faults between chip I/Os and board
- Loopback modes for diagnostics
- Automatic MDI/MDI-X crossover to detect and correct pair swap at all speeds of operation
- Automatic detection and correction of pair swaps, pair skew, and pair polarity
- MDC/MDIO management interface for PHY register configuration
- Interrupt pin option
- Power-down and power-saving modes
- Operating voltages
- Core (DVDDL, AVDDL, AVDDL_PLL):
1.2V (external FET or regulator)
- VDD I/O (DVDDH):
$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, or 1.8 V
- Transceiver (AVDDH):
3.3 V or 2.5 V (commercial temp)
- Available in a 48 -pin QFN ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$) package

Applications

- Laser/Network printer
- Network attached storage (NAS)
- Network server
- Gigabit LAN on motherboard (GLOM)
- Broadband gateway
- Gigabit SOHO/SMB router
- IPTV
- IP set-top box
- Game console
- Triple-play (data, voice, video) media center
- Media converter

Ordering Information

Part Number	Temperature Range	Package	Lead Finish	Wire Bonding	Description
KSZ9031RNXCA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	48-Pin QFN	Pb-Free	Gold	RGMII, Commercial Temperature, Gold Wire Bonding
KSZ9031RNXCC ${ }^{(1)}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	48-Pin QFN	Pb-Free	Copper	RGMII, Commercial Temperature, Copper Wire Bonding
KSZ9031RNXIA ${ }^{(1)}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	48-Pin QFN	Pb-Free	Gold	RGMII, Industrial Temperature, Gold Wire Bonding
KSZ9031RNXIC ${ }^{(1)}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	48-Pin QFN	Pb-Free	Copper	RGMII, Industrial Temperature, Copper Wire Bonding
KSZ9031RNX-EVAL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	48-Pin QFN	Pb-Free		KSZ9031RNX Evaluation Board (Mounted with KSZ9031RNX device in commercial temperature)

Note:

1. Contact factory for lead time.

Revision History

Revision	Date	Summary of Changes
1.0	$10 / 31 / 12$	Data sheet created

Contents

General Description 1
Features 1
Functional Diagram 1
Features (Continued) 2
Applications 2
Ordering Information 2
Revision History 3
Contents 4
List of Figures 7
List of Tables 8
Pin Configuration 9
Pin Description 10
Strapping Options 15
Functional Overview. 16
Functional Description: 10Base-T/100Base-TX Transceiver 17
100Base-TX Transmit 17
100Base-TX Receive. 17
Scrambler/De-Scrambler (100Base-TX only) 17
10Base-T Transmit 17
10Base-T Receive 17
Functional Description: 1000Base-T Transceiver 18
Analog Echo-Cancellation Circuit 18
Automatic Gain Control (AGC) 18
Analog-to-Digital Converter (ADC) 19
Timing Recovery Circuit 19
Adaptive Equalizer. 19
Trellis Encoder and Decoder 19
Functional Description: 10/100/1000 Transceiver Features 19
Auto MDI/MDI-X 19
Pair-Swap, Alignment, and Polarity Check 20
Wave Shaping, Slew-Rate Control, and Partial Response 20
PLL Clock Synthesizer 20
Auto-Negotiation 20
RGMII Interface 22
RGMII Signal Definition 23
RGMII Signal Diagram 23
RGMII Pad Skew Registers 23
RGMII In-Band Status 27
MII Management (MIIM) Interface. 27
Interrupt (INT_N) 28
LED Mode 28
Single-LED Mode 28
Tri-color Dual-LED Mode 28
Loopback Mode 29
Local (Digital) Loopback 29
Remote (Analog) Loopback 30
LinkMD ${ }^{\circledR}$ Cable Diagnostic 31
NAND Tree Support 31
Power Management 32
Energy-Detect Power-Down Mode 32
Software Power-Down Mode 32
Chip Power-Down Mode 32
Energy Efficient Ethernet (EEE). 32
Transmit Direction Control (MAC-to-PHY) 33
Receive Direction Control (PHY-to-MAC) 34
Registers Associated with EEE 36
Wake-On-LAN 36
Magic-Packet Detection 36
Customized-Packet Detection 36
Link Status Change Detection 37
Typical Current/Power Consumption 38
Transceiver (3.3V), Digital I/Os (3.3V) 38
Transceiver (3.3V), Digital I/Os (1.8V) 38
Transceiver (2.5 V), Digital I/Os (2.5 V) 39
Transceiver (2.5V), Digital I/Os (1.8V) 39
Register Map 40
Standard Registers 42
IEEE Defined Registers - Descriptions 42
Vendor-Specific Registers - Descriptions 48
MMD Registers. 52
MMD Registers - Descriptions 53
Absolute Maximum Ratings ${ }^{(1)}$. 62
Operating Ratings ${ }^{(2)}$ 62
Electrical Characteristics ${ }^{(3)}$ 62
Timing Diagrams 65
RGMII Timing 65
Auto-Negotiation Timing 66
MDC/MDIO Timing 67
Power-Up/Power-Down/Reset Timing 68
Reset Circuit 69
Reference Circuits - LED Strap-In Pins 70
Reference Clock - Connection and Selection 71
Magnetic - Connection and Selection 72

Recommended Land Pattern .. 74
Package Information .. 75

List of Figures

Figure 1. KSZ9031RNX Block Diagram... 16
Figure 2. KSZ9031RNX 1000Base-T Transceiver Block Diagram - Single Channel... 18
Figure 3. Auto-Negotiation Flow Chart.. 21
Figure 4. KSZ9031RNX RGMII Interface... 23
Figure 5. Local (Digital) Loopback .. 29
Figure 6. Remote (Analog) Loopback... 30
Figure 7. LPI Mode (Refresh Transmissions and Quiet Periods) .. 33
Figure 8. LPI Transition - RGMII (1000Mbps) Transmit... 33
Figure 9. LPI Transition - RGMII (100Mbps) Transmit... 34
Figure 10. LPI Transition - RGMII (1000Mbps) Receive .. 35
Figure 11. LPI Transition - RGMII (100Mbps) Receive.. 35
Figure 12. RGMII v2.0 Specification (Figure 3 - Multiplexing and Timing Diagram).. 65
Figure 13. Auto-Negotiation Fast Link Pulse (FLP) Timing .. 66
Figure 14. MDC/MDIO Timing.. 67
Figure 15. Power-Up/Power-Down/Reset Timing... 68
Figure 16. Recommended Reset Circuit.. 69
Figure 17. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output ... 69
Figure 18. Reference Circuits for LED Strapping Pins... 70
Figure 19. 25MHz Crystal/Oscillator Reference Clock Connection .. 71
Figure 20. Typical Gigabit Magnetic Interface Circuit ... 72
Figure 21. Recommended Land Pattern, 48-Pin ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$) QFN .. 74

List of Tables

Table 1. MDI/MDI-X Pin Mapping 19
Table 2. Auto-Negotiation Timers 22
Table 3. RGMII Signal Definition 23
Table 4. RGMII Pad Skew Registers 24
Table 5. Absolute Delay for 5-bit Pad Skew Setting 25
Table 6. Absolute Delay for 4-bit Pad Skew Setting 26
Table 7. RGMII In-Band Status 27
Table 8. MII Management Frame Format for the KSZ9031RNX 27
Table 9. Single-LED Mode - Pin Definition 28
Table 10. Tri-color Dual-LED Mode - Pin Definition 28
Table 11. NAND Tree Test Pin Order for KSZ9031RNX 31
Table 12. Typical Current/Power Consumption - Transceiver (3.3V), Digital I/Os (3.3V) 38
Table 13. Typical Current/Power Consumption - Transceiver (3.3V), Digital I/Os (1.8V) 38
Table 14. Typical Current/Power Consumption - Transceiver (2.5V), Digital I/Os (2.5V). 39
Table 15. Typical Current/Power Consumption - Transceiver (2.5V), Digital I/Os (1.8V) 39
Table 16. Standard Registers Supported by KSZ9031RNX 40
Table 17. MMD Registers Supported by KSZ9031RNX 41
Table 18. Portal Registers (Access to Indirect MMD Registers) 52
Table 19. RGMII v2.0 Specification (Timing Specifics from Table 2) 65
Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters 66
Table 21. MDC/MDIO Timing Parameters 67
Table 22. Power-Up/Power-Down/Reset Timing Parameters 68
Table 23. Reference Crystal/Clock Selection Criteria. 71
Table 24. Magnetics Selection Criteria 73
Table 25. Compatible Single-Port 10/100/1000 Magnetics 73

Pin Configuration

Pin Description

Pin Number	Pin Name	Type $^{(1)}$	Pin Function
1	AVDDH	P	3.3V/2.5V (commercial temp only) analog VDD
2	TXRXP_A	I/O	Media Dependent Interface[0], positive signal of differential pair 1000Base-T mode: TXRXP_A corresponds to BI_DA+ for MDI configuration and BI_DB+ for
MDI-X configuration, respectively.			

Pin Number	Pin Name	Type ${ }^{(1)}$	Pin Function				
10	TXRXP_D	I/O	Media Dependent Interface[3], positive signal of differential pair 1000Base-T mode: TXRXP_D corresponds to BI_DD+ for MDI configuration and BI_DC+ for MDI-X configuration, respectively. 10Base-T/100Base-TX mode: TXRXP_D is not used.				
11	TXRXM_D	I/O	Media Dependent Interface[3], negative signal of differential pair 1000Base-T mode: TXRXM_D corresponds to BI_DD- for MDI configuration and BI_DC- for MDI-X configuration, respectively. 10Base-T/100Base-TX mode: TXRXM_D is not used.				
12	AVDDH	P	$3.3 \mathrm{~V} / 2.5 \mathrm{~V}$ (commercial temp only) analog V_{DD}				
13	NC	-	No connect This pin is not bonded and can be connected to digital ground for footprint compatibility with the Micrel KSZ9021RN Gigabit PHY.				
14	DVDDL	P	1.2V digital V_{DD}				
15	LED2/ PHYAD1	I/O	LED output: Programmab Config mode: The pull-up/p power-up/re The LED2 pin is programmed defined as follows: Single-LED Mode Tri-Color Dual-LED Mode For tri-color dual-LED mode, L indicate 10Mbps link and activity.	LED2 Il-down . See th the LED Pin Sta LED2 H L Toggle H H L Toggle D2 work	put ue is latc Strappin MODE str Definition LED1 H H H L Toggle L Toggle conjunc	d as PHY ptions" se ping optio LED2 OFF ON Blinking OFF OFF ON Blinking with LED	[1] during tion for details. (pin 41), and is (pin 17) to
16	DVDDH	P	$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, or 1.8 V digital $\mathrm{V}_{\text {DD_I/ }}$				

Pin Number	Pin Name	Type ${ }^{(1)}$	Pin Function
31	RXD1/ MODE1	I/O	RGMII mode: RGMII RD1 (Receive Data 1) output Config mode: The pull-up/pull-down value is latched as MODE1 during power-up/reset. See the "Strapping Options" section for details.
32	RXD0/ MODE0	I/O	RGMII mode: RGMII RDO (Receive Data 0) output Config mode: The pull-up/pull-down value is latched as MODE0 during power-up/reset. See the "Strapping Options" section for details.
33	$\begin{gathered} \text { RX_DVI } \\ \text { CLK125_EN } \end{gathered}$	I/O	RGMII mode: RGMII RX_CTL (Receive Control) output Config mode: Latched as CLK125_NDO Output Enable during power-up/reset. See the "Strapping Options" section for details.
34	DVDDH	P	$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, or 1.8 V digital $\mathrm{V}_{\text {DD_/IO }}$
35	$\begin{aligned} & \text { RX_CLK/ } \\ & \text { PHYAD2 } \end{aligned}$	I/O	RGMII mode: RGMII RXC (Receive Reference Clock) output Config mode: The pull-up/pull-down value is latched as PHYAD[2] during power-up/reset. See the "Strapping Options" section for details.
36	MDC	Ipu	Management data clock input This pin is the input reference clock for MDIO (pin 37).
37	MDIO	Ipu/O	Management data input/output This pin is synchronous to MDC (pin 36) and requires an external pull-up resistor to DVDDH (digital $\mathrm{V}_{\mathrm{DD}} / / \mathrm{o}$) in a range from $1.0 \mathrm{k} \Omega$ to $4.7 \mathrm{k} \Omega$.
38	$\begin{aligned} & \text { INT_N/ } \\ & \text { PME_N2 } \end{aligned}$	0	Interrupt output: Programmable interrupt output, with register 1Bh as the Interrupt Control/Status register, for programming the interrupt conditions and reading the interrupt status. Register 1Fh, bit [14] sets the interrupt output to active low (default) or active high. PME_N output: Programmable PME_N output (pin option 2). When asserted low, this pin signals that a WOL event has occurred. For Interrupt (when active low) and PME functions, this pin requires an external pull-up resistor to DVDDH (digital $\mathrm{V}_{\mathrm{DD}} / 1 / 0$) in a range from $1.0 \mathrm{k} \Omega$ to $4.7 \mathrm{k} \Omega$.
39	DVDDL	P	1.2 V digital V_{DD}
40	DVDDH	P	$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, or 1.8 V digital $\mathrm{V}_{\mathrm{DD}} / 1 / 0$
41	CLK125_NDO/ LED_MODE	I/O	125 MHz clock output This pin provides a 125 MHz reference clock output option for use by the MAC. Config mode: The pull-up/pull-down value is latched as LED_MODE during power-up/reset. See the "Strapping Options" section for details.
42	RESET_N	Ipu	Chip reset (active low) Hardware pin configurations are strapped-in at the de-assertion (rising edge) of RESET_N. See the "Strapping Options" section for more details.
43	LDO_O	O	On-chip 1.2V LDO controller output This pin drives the input gate of a P-channel MOSFET to generate 1.2 V for the chip's core voltages. If the system provides 1.2 V and this pin is not used, it can be left floating.
44	AVDDL_PLL	P	1.2 V analog V_{DD} for PLL
45	XO	O	25 MHz crystal feedback This pin is a no connect if an oscillator or external clock source is used.
46	XI	I	Crystal / Oscillator/ External Clock input $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$ tolerance
47	NC	-	No connect This pin is not bonded and can be connected to AVDDH power for footprint compatibility with the Micrel KSZ9021RN Gigabit PHY.

Pin Number	Pin Name	Type $^{(1)}$	Pin Function
48	ISET	I/O	Set the transmit output level Connect a 12.1k $\Omega 1 \%$ resistor to ground on this pin.
PADDLE	P_GND	Gnd	Exposed paddle on bottom of chip Connect P_GND to ground.

Note:

1. $P=$ Power supply.

Gnd = Ground.
I = Input.
$\mathrm{O}=$ Output.
I/O = Bi-directional.
$\mathrm{Ipu}=$ Input with internal pull-up (see "Electrical Characteristics" for value).
Ipu/O = Input with internal pull-up (see "Electrical Characteristics" for value)/Output.

Strapping Options

Pin Number	Pin Name	Type ${ }^{(1)}$	Pin Function	
$\begin{aligned} & 35 \\ & 15 \\ & 17 \end{aligned}$	PHYAD2 PHYAD1 PHYADO	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \end{aligned}$	The PHY address, PHYAD[2:0], is sampled and latched at power-up/reset and is configurable to any value from 0 to 7 . Each PHY address bit is configured as follows: $\begin{aligned} & \text { Pull-up = } 1 \\ & \text { Pull-down = } 0 \end{aligned}$ PHY address bits [4:3] are always set to ' 00 '.	
27	MODE3 MODE2 MODE1 MODEO	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \end{aligned}$	The MODE[3:0] strap-in pins are sampled and latched at power-up/reset as follows:	
28			MODE[3:0]	Mode
31			0000	Reserved - not used
32			0001	Reserved - not used
			0010	Reserved - not used
			0011	Reserved - not used
			0100	NAND tree mode
			0101	Reserved - not used
			0110	Reserved - not used
			0111	Chip power-down mode
			1000	Reserved - not used
			1001	Reserved - not used
			1010	Reserved - not used
			1011	Reserved - not used
			1100	RGMII mode - advertise 1000Base-T full-duplex only
			1101	RGMII mode - advertise 1000Base-T full- and half-duplex only
			1110	RGMII mode - advertise all capabilities (10/100/1000 speed half-/full-duplex), except 1000Base-T half-duplex
			1111	RGMII mode - advertise all capabilities (10/100/1000 speed half-/full-duplex)
33	CLK125_EN	I/O	CLK125_EN is sampled and latched at power-up/reset and is defined as follows: Pull-up = Enable 125MHz clock output Pull-down = Disable 125 MHz clock output Pin 41 (CLK125_NDO) provides the 125MHz reference clock output option for use by the MAC.	
41	LED_MODE	I/O	LED_MODE is latched at power-up/reset and is defined as follows: Pull-up = Single-LED mode Pull-down = Tri-color dual-LED mode	

Note:

1. $\mathrm{I} / \mathrm{O}=\mathrm{Bi}$-directional.

Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may be driven during power-up or reset, and consequently cause the PHY strap-in pins on the RGMII signals to be latched to an incorrect configuration. In this case, Micrel recommends adding external pull-ups/pull-downs on the PHY strap-in pins to ensure the PHY is configured to the correct pin strap-in mode.

Functional Overview

The KSZ9031RNX is a completely integrated triple-speed (10Base-T/100Base-TX/1000Base-T) Ethernet physical layer transceiver solution for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP) cable. Its on-chip proprietary 1000Base-T transceiver and Manchester/MLT-3 signaling-based 10Base-T/100Base-TX transceivers are all IEEE 802.3 compliant.
The KSZ9031RNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four differential pairs and by integrating an LDO controller to drive a low-cost MOSFET to supply the 1.2 V core.
On the copper media interface, the KSZ9031RNX can automatically detect and correct for differential pair misplacements and polarity reversals, and correct propagation delays and re-sync timing between the four differential pairs, as specified in the IEEE 802.3 standard for 1000Base-T operation.
The KSZ9031RNX provides the RGMII interface for direct and seamless connection to RGMII MACs in Gigabit Ethernet processors and switches for data transfer at 10/100/1000Mbps.
Figure 1 shows a high-level block diagram of the KSZ9031RNX.

Figure 1. KSZ9031RNX Block Diagram

Functional Description: 10Base-T/100Base-TX Transceiver

100Base-TX Transmit

The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI conversion, and MLT-3 encoding and transmission.
The circuitry starts with a parallel-to-serial conversion, which converts the RGMII data from the MAC into a 125 MHz serial bit stream. The data and control stream is then converted into $4 \mathrm{~B} / 5 \mathrm{~B}$ coding, followed by a scrambler. The serialized data is further converted from NRZ-to-NRZI format then transmitted in MLT-3 current output. The output current is set by an external $12.1 \mathrm{k} \Omega 1 \%$ resistor for the $1: 1$ transformer ratio.
The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX transmitter.

100Base-TX Receive

The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT-3-to-NRZI conversion, data and clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Because the amplitude loss and phase distortion are a function of the cable length, the equalizer must adjust its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization. This is an ongoing process and self-adjusts against environmental changes such as temperature variations.
Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit compensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit converts the MLT-3 format back to NRZI. The slicing threshold is also adaptive.
The clock-recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the $4 \mathrm{~B} / 5 \mathrm{~B}$ decoder. Finally, the NRZ serial data is converted to the RGMII format and provided as the input data to the MAC.

Scrambler/De-Scrambler (100Base-TX only)

The purpose of the scrambler is to spread the power spectrum of the signal to reduce electromagnetic interference (EMI) and baseline wander. Transmitted data is scrambled using an 11-bit wide linear feedback shift register (LFSR). The scrambler generates a 2047-bit non-repetitive sequence, then the receiver de-scrambles the incoming data stream using the same sequence as at the transmitter.

10Base-T Transmit

The 10Base-T output drivers are incorporated into the 100Base-TX drivers to allow for transmission with the same magnetic. The drivers perform internal wave-shaping and pre-emphasis, and output signals with a typical amplitude of 2.5 V peak for standard 10Base-T mode and 1.75 V peak for energy-efficient 10Base-Te mode. The 10Base-T/10Base-Te signals have harmonic contents that are at least 31 dB below the fundamental frequency when driven by an all-ones Manchester-encoded signal.

10Base-T Receive

On the receive side, input buffer and level-detecting squelch circuits are used. A differential input receiver circuit and a phase-locked loop (PLL) perform the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch circuit rejects signals with levels less than 300 mV or with short pulse widths to prevent noises at the receive inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ9031RNX decodes a data frame. The receiver clock is maintained active during idle periods between receiving data frames.
Auto-polarity correction is provided for the receive differential pair to automatically swap and fix the incorrect +/- polarity wiring in the cabling.

Functional Description: 1000Base-T Transceiver

The 1000Base-T transceiver is based-on a mixed-signal/digital-signal processing (DSP) architecture, which includes the analog front-end, digital channel equalizers, trellis encoders/decoders, echo cancellers, cross-talk cancellers, precision clock recovery scheme, and power-efficient line drivers.
Figure 2 shows a high-level block diagram of a single channel of the 1000Base-T transceiver for one of the four differential pairs.

Figure 2. KSZ9031RNX 1000Base-T Transceiver Block Diagram - Single Channel

Analog Echo-Cancellation Circuit

In 1000Base-T mode, the analog echo-cancellation circuit helps to reduce the near-end echo. This analog hybrid circuit relieves the burden of the ADC and the adaptive equalizer.
This circuit is disabled in 10Base-T/100Base-TX mode.

Automatic Gain Control (AGC)

In 1000Base-T mode, the automatic gain control (AGC) circuit provides initial gain adjustment to boost up the signal level. This pre-conditioning circuit is used to improve the signal-to-noise ratio of the receive signal.

Analog-to-Digital Converter (ADC)

In 1000Base-T mode, the analog-to-digital converter (ADC) digitizes the incoming signal. ADC performance is essential to the overall performance of the transceiver.
This circuit is disabled in 10Base-T/100Base-TX mode.

Timing Recovery Circuit

In 1000Base-T mode, the mixed-signal clock recovery circuit together with the digital phase-locked loop is used to recover and track the incoming timing information from the received data. The digital phase-locked loop has very low long-term jitter to maximize the signal-to-noise ratio of the receive signal.
The 1000Base-T slave PHY must transmit the exact receive clock frequency recovered from the received data back to the 1000Base-T master PHY. Otherwise, the master and slave will not be synchronized after long transmission. This also helps to facilitate echo cancellation and NEXT removal.

Adaptive Equalizer

In 1000Base-T mode, the adaptive equalizer provides the following functions:

- Detection for partial response signaling
- Removal of NEXT and ECHO noise
- Channel equalization

Signal quality is degraded by residual echo that is not removed by the analog hybrid because of impedance mismatch. The KSZ9031RNX uses a digital echo canceller to further reduce echo components on the receive signal.
In 1000Base-T mode, data transmission and reception occurs simultaneously on all four pairs of wires (four channels). This results in high-frequency cross-talk coming from adjacent wires. The KSZ9031RNX uses three NEXT cancellers on each receive channel to minimize the cross-talk induced by the other three channels.
In 10Base-T/100Base-TX mode, the adaptive equalizer needs only to remove the inter-symbol interference and recover the channel loss from the incoming data.

Trellis Encoder and Decoder

In 1000Base-T mode, the transmitted 8 -bit data is scrambled into 9 -bit symbols and further encoded into 4D-PAM5 symbols. The initial scrambler seed is determined by the specific PHY address to reduce EMI when more than one KSZ9031RNX is used on the same board. On the receiving side, the idle stream is examined first. The scrambler seed, pair skew, pair order, and polarity must be resolved through the logic. The incoming 4D-PAM5 data is then converted into 9 -bit symbols and de-scrambled into 8 -bit data.

Functional Description: 10/100/1000 Transceiver Features

Auto MDI/MDI-X

The Automatic MDI/MDI-X feature eliminates the need to determine whether to use a straight cable or a crossover cable between the KSZ9031RNX and its link partner. This auto-sense function detects the MDI/MDI-X pair mapping from the link partner, and assigns the MDI/MDI-X pair mapping of the KSZ9031RNX accordingly.
Table 1 shows the KSZ9031RNX 10/100/1000 pin configuration assignments for MDI/MDI-X pin mapping.

Pin (RJ-45 pair)	MDI			MDI-X		
	1000Base-T	100Base-TX	10Base-T	1000Base-T	100Base-TX	10Base-T
TXRXP/M_A (1,2)	$\mathrm{A}+/-$	TX+/-	TX+/-	$\mathrm{B}+/-$	$\mathrm{RX}+/-$	$\mathrm{RX}+/-$
TXRXP/M_B $(3,6)$	$\mathrm{B}+/-$	$\mathrm{RX}+/-$	$\mathrm{RX}+/-$	$\mathrm{A}+/-$	TX+/-	TX+/-
TXRXP/M_C $(4,5)$	$\mathrm{C}+/-$	Not used	Not used	$\mathrm{D}+/-$	Not used	Not used
TXRXP/M_D $(7,8)$	$\mathrm{D}+/-$	Not used	Not used	$\mathrm{C}+/-$	Not used	Not used

Table 1. MDI/MDI-X Pin Mapping

Auto MDI/MDI-X is enabled by default. It is disabled by writing a one to register 1Ch, bit [6]. MDI and MDI-X mode is set by register 1Ch, bit [7] if Auto MDI/MDI-X is disabled.
An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.

Pair-Swap, Alignment, and Polarity Check

In 1000Base-T mode, the KSZ9031RNX

- Detects incorrect channel order and automatically restores the pair order for the A, B, C, D pairs (four channels)
- Supports 50 ± 10 ns difference in propagation delay between pairs of channels in accordance with the IEEE 802.3 standard, and automatically corrects the data skew so the corrected four pairs of data symbols are synchronized
Incorrect pair polarities of the differential signals are automatically corrected for all speeds.

Wave Shaping, Slew-Rate Control, and Partial Response

In communication systems, signal transmission encoding methods are used to provide the noise-shaping feature and to minimize distortion and error in the transmission channel.

- For 1000Base-T, a special partial-response signaling method is used to provide the band-limiting feature for the transmission path.
- For 100Base-TX, a simple slew-rate control method is used to minimize EMI.
- For 10Base-T, pre-emphasis is used to extend the signal quality through the cable.

PLL Clock Synthesizer

The KSZ9031RNX generates 125 MHz , 25 MHz , and 10 MHz clocks for system timing. Internal clocks are generated from the external 25 MHz crystal or reference clock.

Auto-Negotiation

The KSZ9031RNX conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.
Auto-negotiation allows UTP (unshielded twisted pair) link partners to select the highest common mode of operation.
During auto-negotiation, link partners advertise capabilities across the UTP link to each other, and then compare their own capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the operating mode.
The following list shows the speed and duplex operation mode from highest to lowest.

- Priority 1: 1000Base-T, full-duplex
- Priority 2: 1000Base-T, half-duplex
- Priority 3: 100Base-TX, full-duplex
- Priority 4: 100Base-TX, half-duplex
- Priority 5: 10Base-T, full-duplex
- Priority 6: 10Base-T, half-duplex

If auto-negotiation is not supported or the KSZ9031RNX link partner is forced to bypass auto-negotiation for 10Base-T and 100Base-TX modes, the KSZ9031RNX sets its operating mode by observing the input signal at its receiver. This is known as parallel detection, and allows the KSZ9031RNX to establish a link by listening for a fixed signal protocol in the absence of the auto-negotiation advertisement protocol.
The auto-negotiation link-up process is shown in Figure 3.

Figure 3. Auto-Negotiation Flow Chart
For 1000Base-T mode, auto-negotiation is always required to establish a link. During 1000Base-T auto-negotiation, the master and slave configuration is first resolved between link partners. Then the link is established with the highest common capabilities between link partners.
Auto-negotiation is enabled by default after power-up or hardware reset. After that, auto-negotiation can be enabled or disabled through register 0h, bit [12]. If auto-negotiation is disabled, the speed is set by register 0h, bits [6, 13] and the duplex is set by register Oh, bit [8].
If the speed is changed on the fly, the link goes down and auto-negotiation and parallel detection initiate until a common speed between KSZ9031RNX and its link partner is re-established for a link.
If the link is already established and there is no change of speed on the fly, the changes (for example, duplex and pause capabilities) will not take effect unless either auto-negotiation is restarted through register Oh, bit [9], or a link-down to linkup transition occurs (that is, disconnecting and reconnecting the cable).
After auto-negotiation is completed, the link status is updated in register 1 h , bit [2], and the link partner capabilities are updated in registers $5 \mathrm{~h}, 6 \mathrm{~h}, 8 \mathrm{~h}$, and Ah .
The auto-negotiation finite state machines use interval timers to manage the auto-negotiation process. The duration of these timers under normal operating conditions is summarized in Table 2.

Auto-Negotiation Interval Timers	Time Duration
Transmit burst interval	16 ms
Transmit pulse interval	$68 \mu \mathrm{~s}$
FLP detect minimum time	$17.2 \mu \mathrm{~s}$
FLP detect maximum time	$185 \mu \mathrm{~s}$
Receive minimum burst interval	6.8 ms
Receive maximum burst interval	112 ms
Data detect minimum interval	$35.4 \mu \mathrm{~s}$
Data detect maximum interval	$95 \mu \mathrm{~s}$
NLP test minimum interval	4.5 ms
NLP test maximum interval	30 ms
Link loss time	52 ms
Break link time	1480 ms
Parallel detection wait time	830 ms
Link enable wait time	1000 ms

Table 2. Auto-Negotiation Timers

RGMII Interface

The Reduced Gigabit Media Independent Interface (RGMII) supports on-chip data-to-clock delay timing according to the RGMII Version 2.0 Specification, with programming options for external delay timing and to adjust and correct TX and RX timing paths.
RGMII provides a common interface between RGMII PHYs and MACs, and has the following key characteristics:

- Pin count is reduced from 24 pins for the IEEE Gigabit Media Independent Interface (GMII) to 12 pins for RGMII.
- All speeds ($10 \mathrm{Mbps}, 100 \mathrm{Mbps}$, and 1000 Mbps) are supported at both half- and full-duplex.
- Data transmission and reception are independent and belong to separate signal groups.
- Transmit data and receive data are each four bits wide, a nibble.

In RGMII operation, the RGMII pins function as follows:

- The MAC sources the transmit reference clock, TXC, at 125 MHz for $1000 \mathrm{Mbps}, 25 \mathrm{MHz}$ for 100 Mbps , and 2.5 MHz for 10 Mbps .
- The PHY recovers and sources the receive reference clock, RXC, at 125 MHz for $1000 \mathrm{Mbps}, 25 \mathrm{MHz}$ for 100 Mbps , and 2.5 MHz for 10 Mbps ..
- For 1000Base-T, the transmit data, TXD[3:0], is presented on both edges of TXC, and the received data, RXD[3:0], is clocked out on both edges of the recovered 125 MHz clock, RXC.
- For 10Base-T/100Base-TX, the MAC holds TX_CTL low until both PHY and MAC operate at the same speed. During the speed transition, the receive clock is stretched on either a positive or negative pulse to ensure that no clock glitch is presented to the MAC.
- TX_ER and RX_ER are combined with TX_EN and RX_DV, respectively, to form TX_CTL and RX_CTL. These two RGMII control signals are valid at the falling clock edge.

After power-up or reset, the KSZ9031RNX is configured to RGMII mode if the MODE[3:0] strap-in pins are set to one of the RGMII mode capability options. See the "Strapping Options" section for available options.
The KSZ9031RNX has the option to output a 125MHz reference clock on the CLK125_NDO pin. This clock provides a lower-cost reference clock alternative for RGMII MACs that require a 125 MHz crystal or oscillator. The 125 MHz clock output is enabled after power-up or reset if the CLK125_EN strap-in pin is pulled high.

RGMII Signal Definition

Table 3 describes the RGMII signals. Refer to the RGMII Version 2.0 Specification for more detailed information.

RGMII Signal Name (per spec)	RGMII Signal Name (per KSZ9031RNX)	Pin Type (with respect to PHY)	Pin Type (with respect to MAC)	Description
TXC	GTX_CLK	Input	Output	Transmit Reference Clock $(125 \mathrm{MHz}$ for 1000Mbps, 25MHz for 100Mbps, 2.5MHz for 10Mbps)
TX_CTL	TX_EN	Input	Output	Transmit Control
TXD[3:0]	TXD[3:0]	Input	Output	Transmit Data[3:0]
RXC	RX_CLK	Output	Input	Receive Reference Clock $(125 \mathrm{MHz}$ for 1000Mbps, 25MHz for 100Mbps, 2.5MHz for 10Mbps)
RX_CTL	RX_DV	Output	Input	Receive Control
RXD[3:0]	RXD[3:0]	Output	Input	Receive Data[3:0]

Table 3. RGMII Signal Definition

RGMII Signal Diagram

The KSZ9031RNX RGMII pin connections to the MAC are shown in Figure 4.

Figure 4. KSZ9031RNX RGMII Interface

RGMII Pad Skew Registers

Pad skew registers are available for all RGMII pins (clocks, control signals, and data bits) to provide programming options to adjust or correct the timing relationship for each RGMII pin. Because RGMII is a source-synchronous bus interface, the timing relationship needs to be maintained only within the RGMII pin's respective timing group.

- RGMII transmit timing group pins:

GTX_CLK, TX_EN, TXD[3:0]

- RGMII receive timing group pins:

RX_CLK, RX_DV, RXD[3:0]

The following four registers located at MMD Address 2 h are provided for pad skew programming.

Address	Name	Description	Mode	Default
MMD Address $\mathbf{2 h}$, Register 4h - RGMII Control Signal Pad Skew				
$2.4 .15: 8$	Reserved	Reserved	RW	$0000 _0000$
$2.4 .7: 4$	RX_DV Pad Skew	RGMII RX_CTL output pad skew control $(0.06 n s / s t e p)$	RW	0111
$2.4 .3: 0$	TX_EN Pad Skew	RGMII TX_CTL input pad skew control $(0.06 n s / s t e p)$	RW	0111

MMD Address 2h, Register 5h - RGMII RX Data Pad Skew

2.5.15:12	RXD3 Pad Skew	RGMII RXD3 output pad skew control (0.06ns/step)	RW	0111
2.5.11:8	RXD2 Pad Skew	RGMII RXD2 output pad skew control (0.06ns/step)	RW	0111
2.5.7:4	RXD1 Pad Skew	RGMII RXD1 output pad skew control (0.06ns/step)	RW	0111
2.5.3:0	$\begin{aligned} & \text { RXDO } \\ & \text { Pad Skew } \end{aligned}$	RGMII RXDO output pad skew control (0.06ns/step)	RW	0111
MMD Address 2h, Register 6h - RGMII TX Data Pad Skew				
2.6.15:12	TXD3 Pad Skew	RGMII TXD3 output pad skew control (0.06ns/step)	RW	0111
2.6.11:8	TXD2 Pad Skew	RGMII TXD2 output pad skew control (0.06ns/step)	RW	0111
2.6.7:4	TXD1 Pad Skew	RGMII TXD1 output pad skew control (0.06ns/step)	RW	0111
2.6.3:0	$\begin{aligned} & \text { TXD0 } \\ & \text { Pad Skew } \end{aligned}$	RGMII TXDO output pad skew control (0.06ns/step)	RW	0111
MMD Address 2h, Register 8h-RGMII Clock Pad Skew				
2.8.15:10	Reserved	Reserved	RW	0000_00
2.8.9:5	$\begin{aligned} & \text { GTX_CLK } \\ & \text { Pad Skew } \end{aligned}$	RGMII GTX_CLK input pad skew control (0.06ns/step)	RW	01_111
2.8.4:0	RX_CLK Pad Skew	RGMII RX_CLK output pad skew control (0.06ns/step)	RW	0_1111

Table 4. RGMII Pad Skew Registers

The RGMII control signals and data bits have 4-bit skew settings, while the RGMII clocks have 5-bit skew settings.
Each register bit is approximately a 0.06 ns step change. A single-bit decrement decreases the delay by approximately 0.06 ns , while a single-bit increment increases the delay by approximately 0.06 ns .

Table 5 and Table 6 list the approximate absolute delay for each pad skew (value) setting.

Pad Skew (value)	Delay (ns)
0_0000	-0.90
0_0001	-0.84
0_0010	-0.78
0_0011	-0.72
0_0100	-0.66
0_0101	-0.60
0_0110	-0.54
0_0111	-0.48
0_1000	-0.42
0_1001	-0.36
0_1010	-0.30
0_1011	-0.24
0_1100	-0.18
0_1101	-0.12
$0 _1110$	-0.06
$0 _1111$	No delay adjustment (default value)
1_0000	+0.06
1_0001	+0.12
1_0010	+0.18
1_0011	+0.24
1_0100	+0.30
1_0101	+0.36
1_0110	+0.42
1_0111	+0.48
1_1000	+0.54
1_1001	+0.60
1_1010	+0.66
1_1011	+0.72
1_1100	+0.78
1_1101	+0.84
1_1110	+0.90
1_1111	

Table 5. Absolute Delay for 5-bit Pad Skew Setting

Pad Skew (value)	Delay (ns)
0000	-0.42
0001	-0.36
0010	-0.30
0011	-0.24
0100	-0.18
0101	-0.12
0110	-0.06
0111	No delay adjustment (default value)
1000	+0.06
1001	+0.12
1010	+0.18
1011	+0.24
1100	+0.30
1101	+0.42
1110	+0.48
1111	

Table 6. Absolute Delay for 4-bit Pad Skew Setting
When computing the RGMII timing relationships, delays along the entire data path must be aggregated to determine the total delay to be used for comparison between RGMII pins within their respective timing group. For the transmit data path, total delay includes MAC output delay, MAC-to-PHY PCB routing delay, and PHY (KSZ9031RNX) input delay and skew setting (if any). For the receive data path, the total delay includes PHY (KSZ9031RNX) output delay, PHY-to-MAC PCB routing delay, and MAC input delay and skew setting (if any).
After power-up or reset, the KSZ9031RNX defaults to the following timings at its RGMII I/O pins to support on-chip data-to-clock skew timing according to the RGMII Version 2.0 Specification:

- Transmit Inputs: GTX_CLK clock is in sync within ± 500 ps of TX_EN and TXD[3:0]
- Receive outputs: RX_CLK is delayed about 1.2 ns with respect to RX_DV and RXD[3:0]

The above default RGMII timings imply:

- RX_CLK clock skew is set by the KSZ9031RNX default register settings.
- GTX_CLK clock skew is provided by the MAC.
- No PCB delay is required for GTX_CLK and RX_CLK clocks.

The following examples show how to read/write to MMD Address 2h, Register 8h for the RGMII GTX_CLK and RX_CLK skew settings. MMD register access is through the direct portal registers Dh and Eh. For more programming details, refer to the "MMD Registers - Descriptions" section.

- Read back value of MMD Address 2h, Register 8h.
- Write register 0xD $=0 \times 0002$ // Select MMD Device Address 2 h
- Write register 0xE $=0 \times 0008$ // Select register 8h of MMD Device Address 2 h
- Write register 0xD $=0 \times 4002$ // Select register data for MMD Device Address 2h, register 8h
- Read register 0xE // Read value of MMD Device Address 2h, Register 8h
- Write value 0x03FF (delay GTX_CLK and RX_CLK pad skews to their maximum values) to MMD Address 2 h , register 8h
- Write register 0xD $=0 \times 0002$
// Select MMD Device Address 2h
- Write register 0xE $=0 \times 0008$
// Select register 8h of MMD Device Address 2 h
- Write register 0xD $=0 \times 4002$
// Select register data for MMD Device Address 2h, register 8h
- Write register 0xE = 0x03FF
// Write value 0x03FF to MMD Device Address 2h, register 8h

RGMII In-Band Status

The KSZ9031RNX provides in-band status to the MAC during the inter-frame gap when RX_DV is de-asserted. RGMII inband status is always enabled after power-up.
The in-band status is sent to the MAC using the $\operatorname{RXD}[3: 0]$ data pins, and is described in Table 7.

RX_DV	RXD3	RXD[2:1]	RXD0
0	Duplex Status	RX_CLK clock speed	Link Status
(valid only when RX_DV	$0=$ Half-duplex	$00=2.5 \mathrm{MHz}(10 \mathrm{Mbps})$	$0=$ Link down
is low)	$1=$ Full-duplex	$01=25 \mathrm{MHz}(100 \mathrm{Mbps})$	$1=$ Link up
		$10=125 \mathrm{MHz}(1000 \mathrm{Mbps})$	
		$11=$ Reserved	

Table 7. RGMII In-Band Status

MII Management (MIIM) Interface

The KSZ9031RNX supports the IEEE 802.3 MII Management interface, also known as the Management Data Input/ Output (MDIO) interface. This interface allows upper-layer devices to monitor and control the state of the KSZ9031RNX. An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 Specification.
The MIIM interface consists of the following:

- A physical connection that incorporates the clock line (MDC) and the data line (MDIO).
- A specific protocol that operates across the physical connection mentioned earlier, which allows an external controller to communicate with one or more KSZ9031RNX devices. Each KSZ9031RNX device is assigned a unique PHY address between 0 h and 7 h by the PHYAD[2:0] strapping pins.
- A 32-register address space for direct access to IEEE-defined registers and vendor-specific registers, and for indirect access to MMD addresses and registers. See the "Register Map" section.
PHY address Oh is supported as the unique PHY address only; it is not supported as the broadcast PHY address, which allows for a single write command to simultaneously program an identical PHY register for two or more PHY devices (for example, using PHY address Oh to set register Oh to a value of 0×1940 to set bit [11] to a value of one to enable software power-down). Instead, separate write commands are used to program each PHY device.
Table 8 shows the MII Management frame format for the KSZ9031RNX.

	Preamble	Start of Frame	Read/Write OP Code	PHY Address Bits [4:0]	REG Address Bits [4:0]	TA	Data Bits [15:0]	Idle
Read	321 1's	01	10	$00 A A A$	RRRRR	Z0	DDDDDDDD_DDDDDDDD	Z
Write	321 's	01	01	$00 A A A$	RRRRR	10	DDDDDDDD_DDDDDDDD	Z

Table 8. MII Management Frame Format for the KSZ9031RNX

Interrupt (INT_N)

The INT_N pin is an optional interrupt signal that is used to inform the external controller that there has been a status update in the KSZ9031RNX PHY register. Bits [15:8] of register 1Bh are the interrupt control bits that enable and disable the conditions for asserting the INT_N signal. Bits [7:0] of register 1Bh are the interrupt status bits that indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 1Bh.
Bit [14] of register 1Fh sets the interrupt level to active high or active low. The default is active low.
The MII Management bus option gives the MAC processor complete access to the KSZ9031RNX control and status registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.

LED Mode

The KSZ9031RNX provides two programmable LED output pins, LED2 and LED1, which are configurable to support two LED modes. The LED mode is configured by the LED_MODE strap-in (pin 41). It is latched at power-up/reset and is defined as follows:

- Pull-up: Single-LED mode
- Pull-down: Tri-color dual-LED mode

Single-LED Mode

In single-LED mode, the LED2 pin indicates the link status while the LED1 pin indicates the activity status, as shown in Table 9.

LED Pin	Pin State	LED Definition	Link/Activity
LED2	H	OFF	Link off
	L	ON	Link on (any speed)
LED1	H	OFF	No activity
	Toggle	Blinking	Activity (RX, TX)

Table 9. Single-LED Mode - Pin Definition

Tri-color Dual-LED Mode

In tri-color dual-LED mode, the link and activity status are indicated by the LED2 pin for 1000Base-T; by the LED1 pin for 100Base-TX; and by both LED2 and LED1 pins, working in conjunction, for 10Base-T. This is summarized in Table 10.

LED Pin (State)		LED Pin (Definition)		Link/Activity
LED2	LED1	LED2	LED1	
H	H	OFF	OFF	Link off
L	H	ON	OFF	1000 Link / No activity
Toggle	H	Blinking	OFF	1000 Link / Activity (RX, TX)
H	L	OFF	ON	100 Link / No activity
H	Toggle	OFF	Blinking	100 Link / Activity (RX, TX)
L	L	ON	ON	10 Link / No activity
Toggle	Toggle	Blinking	Blinking	10 Link / Activity (RX, TX)

Table 10. Tri-color Dual-LED Mode - Pin Definition

Each LED output pin can directly drive an LED with a series resistor (typically 220Ω to 470Ω).

Loopback Mode

The KSZ9031RNX supports the following loopback operations to verify analog and/or digital data paths.

- Local (digital) loopback
- Remote (analog) loopback

Local (Digital) Loopback

This loopback mode checks the RGMII transmit and receive data paths between KSZ9031RNX and external MAC, and is supported for all three speeds (10/100/1000Mbps) at full-duplex.
The loopback data path is shown in Figure 5.

1. RGMII MAC transmits frames to KSZ9031RNX.
2. Frames are wrapped around inside KSZ9031RNX.
3. KSZ9031RNX transmits frames back to RGMII MAC.

Figure 5. Local (Digital) Loopback
The following programming steps and register settings are used for local loopback mode.
For 1000Mbps loopback,

1. Set register Oh,

- Bit [14] = 1 // Enable local loopback mode
- Bits $[6,13]=10 \quad / /$ Select 1000Mbps speed
- Bit [12] = $0 \quad / /$ Disable auto-negotiation
- Bit [8] = 1 // Select full-duplex mode

2. Set register 9 h ,

- Bit [12] = 1 // Enable master-slave manual configuration
- Bit [11] = 0 // Select slave configuration (required for loopback mode)

For 10/100Mbps loopback,

1. Set register Oh,

- Bit [14] = $1 \quad / /$ Enable local loopback mode
- Bits $[6,13]=00 / 01 / / /$ Select $10 \mathrm{Mbps} / 100 \mathrm{Mbps}$ speed
- Bit [12] = 0 // Disable auto-negotiation
- Bit $[8]=1 \quad / /$ Select full-duplex mode

Remote (Analog) Loopback

This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and receive data paths between KSZ9031RNX and its link partner, and is supported for 1000Base-T full-duplex mode only.
The loopback data path is shown in Figure 6.

1. The Gigabit PHY link partner transmits frames to KSZ9031RNX.
2. Frames are wrapped around inside KSZ9031RNX.
3. KSZ9031RNX transmits frames back to the Gigabit PHY link partner.

Figure 6. Remote (Analog) Loopback
The following programming steps and register settings are used for remote loopback mode.

1. Set register Oh,

- Bits $[6,13]=10 \quad / /$ Select 1000Mbps speed
- Bit [12] $=0$ // Disable auto-negotiation
- Bit [8] = $1 / /$ Select full-duplex mode

Or just auto-negotiate and link up at 1000Base-T full-duplex mode with link partner.
2. Set Register 11h,

- Bit [8] = 1 // Enable remote loopback mode

LinkMD ${ }^{\circledR}$ Cable Diagnostic

The LinkMD function uses time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems, such as open circuits, short circuits, and impedance mismatches.
LinkMD operates by sending a pulse of known amplitude and duration down the selected differential pair, then analyzing the polarity and shape of the reflected signal to determine the type of fault: open circuit for a positive/non-inverted amplitude reflection and short circuit for a negative/inverted amplitude reflection. The time duration for the reflected signal to return provides the approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as a numerical value that can be translated to a cable distance.
LinkMD is initiated by accessing register 12h, the LinkMD - Cable Diagnostic register, in conjunction with register 1Ch, the Auto MDI/MDI-X register. The latter register is needed to disable the Auto MDI/MDI-X function before running the LinkMD test. Additionally, a software reset (Reg. Oh, bit [15] = 1) should be performed before and after running the LinkMD test. The reset helps to ensure the KSZ9031RNX is in the normal operating state before and after the test.

NAND Tree Support

The KSZ9031RNX provides parametric NAND tree support for fault detection between chip I/Os and board. NAND tree mode is enabled at power-up/reset with the MODE[3:0] strap-in pins set to '0100'.
Table 11 lists the NAND tree pin order.

Pin	Description
LED2	Input
LED1/PME_N1	Input
TXD0	Input
TXD1	Input
TXD2	Input
TXD3	Input
GTX_CLK	Input
TX_EN	Input
RX_DV	Input
RX_CLK	Input
INT_N/PME_N2	Input
MDC	Input
MDIO	Input
CLK125_NDO	Output

Table 11. NAND Tree Test Pin Order for KSZ9031RNX

Power Management

The KSZ9031RNX incorporates a number of power-management modes and features that provide methods to consume less energy. These are discussed in the following sections.

Energy-Detect Power-Down Mode

Energy-detect power-down (EDPD) mode is used to further reduce the transceiver power consumption when the cable is unplugged. It is enabled by writing a one to MMD address 1Ch, register 23h, bit [0], and is in effect when auto-negotiation mode is enabled and the cable is disconnected (no link).
In EDPD Mode, the KSZ9031RNX shuts down all transceiver blocks, except for the transmitter and energy detect circuits. Power can be reduced further by extending the time interval between the transmissions of link pulses to check for the presence of a link partner. The periodic transmission of link pulses is needed to ensure the KSZ9031RNX and its link partner, when operating in the same low-power state and with Auto MDI/MDI-X disabled, can wake up when the cable is connected between them. By default, EDPD mode is disabled after power-up.

Software Power-Down Mode

This mode is used to power down the KSZ9031RNX device when it is not in use after power-up. Software power-down (SPD) mode is enabled by writing a one to register Oh, bit [11]. In the SPD state, the KSZ9031RNX disables all internal functions, except for the MII management interface. The KSZ9031RNX exits the SPD state after a zero is written to register Oh, bit [11].

Chip Power-Down Mode

This mode provides the lowest power state for the KSZ9031RNX device when it is mounted on the board but not in use. Chip power-down (CPD) mode is enabled after power-up/reset with the MODE[3:0] strap-in pins set to '0111'. The KSZ9031RNX exits CPD mode after a hardware reset is applied to the RESET_N pin (pin 42) with the MODE[3:0] strap-in pins set to an operating mode other than CPD.

Energy Efficient Ethernet (EEE)

The KSZ9031RNX implements Energy Efficient Ethernet (EEE) as described in IEEE Standard 802.3az for line signaling by the four differential pairs (analog side) and according to the multisource agreement (MSA) of collaborating Gigabit Ethernet chip vendors for the RGMII (digital side). This agreement is based on the IEEE Standard's EEE implementation for GMII (1000Mbps) and MII (100Mbps). The specification is defined around an EEE-compliant MAC on the host side and an EEE-compliant link partner on the line side that support the special signaling associated with EEE. EEE saves power by keeping the AC signal on the copper Ethernet cable at approximately OV peak-to-peak as often as possible during periods of no traffic activity, while maintaining the link-up status. This is referred to as low-power idle (LPI) mode or state.
During LPI mode, the copper link responds automatically when it receives traffic and resumes normal PHY operation immediately, without blockage of traffic or loss of packet. This involves exiting LPI mode and returning to normal $100 / 1000 \mathrm{Mbps}$ operating mode. Wake-up times are $<16 \mu$ s for 1000Base-T and $<30 \mu \mathrm{~s}$ for 100Base-TX.
The LPI state is controlled independently for transmit and receive paths, allowing the LPI state to be active (enabled) for:

- Transmit cable path only
- Receive cable path only
- Both transmit and receive cable paths

The KSZ9031RNX has the EEE function disabled as the power-up default setting. The EEE function is enabled by setting the following EEE advertisement bits at MMD address 7h, register 3Ch, followed by restarting auto-negotiation (writing a ' 1 ' to register 0h, bit [9]):

- Bit [2] = 1 // Enable 1000Mbps EEE mode
- Bit [1] = $1 \quad / /$ Enable 100Mbps EEE mode

For standard (non-EEE) 10Base-T mode, normal link pulses (NLPs) with long periods of no AC signal transmission are used to maintain the link during the idle period when there is no traffic activity. To save more power, the KSZ9031RNX provides the option to enable 10Base-Te mode, which saves additional power by reducing the transmitted signal amplitude from 2.5 V to 1.75 V . To enable 10Base-Te mode, write a ' 1 ' to MMD address 1 Ch , register 4 h , bit [10].

During LPI mode, refresh transmissions are used to maintain the link; power savings occur in quiet periods. Approximately every 20 to 22 milliseconds, a refresh transmission of 200 to 220 microseconds is sent to the link partner. The refresh transmissions and quiet periods are shown in Figure 7.

Figure 7. LPI Mode (Refresh Transmissions and Quiet Periods)

Transmit Direction Control (MAC-to-PHY)

RGMII 1000Mbps transmission from MAC-to-PHY uses both rising and falling edges of the GTX_CLK clock. The KSZ9031RNX uses the TX_EN pin as the RGMII transmit control signal (TX_CTL) to clock in the TX_EN signal on the rising edge and the TX_ER signal on the falling edge. It also uses the TXD[3:0] pins to clock in the TX data low nibble bits [3:0] on the rising edge and the TX data high nibble bits [7:4] on the falling edge.
The KSZ9031RNX enters LPI mode for the transmit direction when its attached EEE-compliant MAC de-asserts the TX_EN signal (the TX_CTL pin outputs low on the rising edge), asserts the TX_ER signal (the TX_CTL pin outputs high on the falling edge), and sets TX data bits [7:0] to 0000_0001 (TXD[3:0] pins output 0001 on the rising edge and 0000 on the falling edge). The KSZ9031RNX remains in the 1000Mbps transmit LPI state while the MAC maintains the states of these signals. When the MAC changes any of the TX_EN, TX_ER, or TX data signals from their LPI state values, the KSZ9031RNX exits the LPI transmit state.
To save more power, the MAC can stop the GTX_CLK clock after the RGMII signals for the LPI state have been asserted for 10 or more GTX_CLK clock cycles.
Figure 8 shows the LPI transition for RGMII transmit in 1000Mbps mode.

Figure 8. LPI Transition - RGMII (1000Mbps) Transmit

RGMII 100Mbps transmission from MAC-to-PHY uses both rising and falling edges of the GTX_CLK clock. The KSZ9031RNX uses the TX_EN pin as the RGMII transmit control signal (TX_CTL) to clock in the TX_EN signal on the rising edge and the TX_ER signal on the falling edge. It also uses the TXD[3:0] pins to clock in the TX data bits [3:0] on the rising edge.
The KSZ9031RNX enters LPI mode for the transmit direction when its attached EEE-compliant MAC de-asserts the TX_EN signal (the TX_CTL pin outputs low on the rising edge), asserts the TX_ER signal (the TX_CTL pin outputs high on the falling edge), and sets TX data bits [3:0] to 0001 (the TXD[3:0] pins output 0001). The KSZ9031RNX remains in the 100Mbps transmit LPI state while the MAC maintains the states of these signals. When the MAC changes any of the TX_EN, TX_ER, or TX data signals from their LPI state values, the KSZ9031RNX exits the LPI transmit state.
To save more power, the MAC can stop the GTX_CLK clock after the RGMII signals for the LPI state have been asserted for 10 or more GTX_CLK clock cycles.
Figure 9 shows the LPI transition for RGMII transmit in 100Mbps mode.

Figure 9. LPI Transition - RGMII (100Mbps) Transmit

Receive Direction Control (PHY-to-MAC)

RGMII 1000Mbps transmission from PHY-to-MAC uses both rising and falling edges of the RX_CLK clock. The KSZ9031RNX uses the RX_DV pin as the RGMII receive control signal (RX_CTL) to clock out the RX_DV signal on the rising edge and the $R X$ _ER signal on the falling edge It also uses the $R X D[\overline{3}: 0]$ pins to clock out the RX data low nibble bits [3:0] on the rising edge and the RX data high nibble bits [7:4] on the falling edge.
The KSZ9031RNX enters LPI mode for the receive direction when it receives the /P/ code bit pattern (sleep/refresh) from its EEE-compliant link partner. It then drives the RX_DV pin low on the rising clock edge and high on the falling clock edge to de-assert the RX_DV signal and assert the RX_ER signal, respectively, to the MAC. Also, the RXD[3:0] pins are driven to 0001 on the rising clock edge and 0000 on the falling clock edge to set the RX data bits [7:0] to 0000_0001. The KSZ9031RNX remains in the 1000Mbps receive LPI state while it continues to receive the refresh from its link partner, so it will continue to maintain and drive the LPI output states for the RGMII receive output pins to inform the attached EEEcompliant MAC that it is in the receive LPI state. When the KSZ9031RNX receives a non /P/ code bit pattern (non Refresh), it exits the receive LPI state and sets the RX_DV and RXD[3:0] output pins accordingly for a normal frame or normal idle.
To save more power, the KSZ9031RNX stops the RX_CLK clock output to the MAC after 10 or more RX_CLK clock cycles have occurred in the receive LPI state.
Figure 10 shows the LPI transition for RGMII receive in 1000 Mbps mode.

Figure 10. LPI Transition - RGMII (1000Mbps) Receive
RGMII 100Mbps transmission from PHY-to-MAC uses both rising and falling edges of the RX_CLK clock. The KSZ9031RNX uses the RX_DV pin as the RGMII receive control signal (RX_CTL) to clock out the RX_DV signal on the rising edge and the RX_ER signal on the falling edge. It also uses the RXD[3:0] pins to clock out the RX data bits [3:0] on the rising edge.
The KSZ9031RNX enters LPI mode for the receive direction when it receives the /P/ code bit pattern (sleep/refresh) from its EEE-compliant link partner. It then drives the RX_DV pin low on the rising clock edge and high on the falling clock edge to de-assert the RX_DV signal and assert the RX_ER signal, respectively, to the MAC. Also, the RXD[3:0] pins are driven to 0001. The KSZ9031RNX remains in the 100Mbps receive LPI state while it continues to receive the refresh from its link partner, so it will continue to maintain and drive the LPI output states for the RGMII receive output pins to inform the attached EEE-compliant MAC that it is in the receive LPI state. When the KSZ9031RNX receives a non /P/ code bit pattern (non-refresh), it exits the receive LPI state and sets the RX_DV and RXD[3:0] output pins accordingly for a normal frame or normal idle.
The KSZ9031RNX stops the RX_CLK clock output to the MAC after 10 or more RX_CLK clock cycles have occurred in the receive LPI state to save more power.
Figure 11 shows the LPI transition for RGMII receive in 100Mbps mode.

Figure 11. LPI Transition - RGMII (100Mbps) Receive

Registers Associated with EEE

The following MMD registers are provided for EEE configuration and management:

- MMD address 3h, register Oh - PCS EEE - Control register
- MMD address 3h, register 1h - PCS EEE - Status register
- MMD address 7h, register 3Ch - EEE Advertisement register
- MMD address 7h, register 3Dh - EEE Link Partner Advertisement register

Wake-On-LAN

Wake-On-LAN (WOL) is normally a MAC-based function to wake up a host system (for example, an Ethernet end device, such as a PC) that is in standby power mode. Wake-up is triggered by receiving and detecting a special packet (commonly referred to as the "magic packet") that is sent by the remote link partner. The KSZ9031RNX can perform the same WOL function if the MAC address of its associated MAC device is entered into the KSZ9031RNX PHY registers for magic-packet detection. When the KSZ9031RNX detects the magic packet, it wakes up the host by driving its power management event (PME) output pin low.
By default, the WOL function is disabled. It is enabled by setting the enabling bit and configuring the associated registers for the selected PME wake-up detection method.
The KSZ9031RNX provides three methods to trigger a PME wake-up:

- Magic-packet detection
- Customized-packet detection
- Link status change detection

Magic-Packet Detection

The magic packet's frame format starts with 6 bytes of 0xFFh and is followed by 16 repetitions of the MAC address of its associated MAC device (local MAC device).
When the magic packet is detected from its link partner, the KSZ9031RNX asserts its PME output pin low.
The following MMD address 2 h registers are provided for magic-packet detection:

- Magic-packet detection is enabled by writing a ' 1 ' to MMD address 2 h , register 10h, bit [6]
- The MAC address (for the local MAC device) is written to and stored in MMD address 2 h , registers $11 \mathrm{~h}-13 \mathrm{~h}$

The KSZ9031RNX does not generate the magic packet. The magic packet must be provided by the external system.

Customized-Packet Detection

The customized packet has associated register/bit masks to select which byte, or bytes, of the first 64 bytes of the packet to use in the CRC calculation. After the KSZ9031RNX receives the packet from its link partner, the selected bytes for the received packet are used to calculate the CRC. The calculated CRC is compared to the expected CRC value that was previously written to and stored in the KSZ9031RNX PHY registers. If there is a match, the KSZ9031RNX asserts its PME output pin low.
Four customized packets are provided to support four types of wake-up scenarios. A dedicated set of registers is used to configure and enable each customized packet.
The following MMD registers are provided for customized-packet detection:

- Each of the four customized packets is enabled via MMD address 2 h , register 10h,
- Bit [2] // For customized packets, type 0
- Bit [3] // For customized packets, type 1
- Bit [4] // For customized packets, type 2
- Bit [5] // For customized packets, type 3
- 32-bit expected CRCs are written to and stored in:
- MMD address 2 h , registers $14 \mathrm{~h}-15 \mathrm{~h}$ // For customized packets, type 0
- MMD address 2 h , registers $16 \mathrm{~h}-17 \mathrm{~h} / /$ For customized packets, type 1
- MMD address 2 h , registers $18 \mathrm{~h}-19 \mathrm{~h} / /$ For customized packets, type 2
- MMD address 2 h , registers 1Ah - 1Bh // For customized packets, type 3
- Masks to indicate which of the first 64-bytes to use in the CRC calculation are set in:
- MMD address 2 h , registers 1Ch - 1Fh // For customized packets, type 0
- MMD address 2 h , registers $20 \mathrm{~h}-23 \mathrm{~h} / /$ For customized packets, type 1
- MMD address 2 h , registers $24 \mathrm{~h}-27 \mathrm{~h} \quad / /$ For customized packets, type 2
- MMD address 2 h , registers $28 \mathrm{~h}-2 \mathrm{Bh} \quad / /$ For customized packets, type 3
- 32-bit calculated CRCs (of receive packet) are stored in:
- MMD address 2 h , registers $30 \mathrm{~h}-31 \mathrm{~h} / /$ For customized packets, type 0
- MMD address $2 h$, registers $32 \mathrm{~h}-33 \mathrm{~h}$ // For customized packets, type 1
- MMD address 2 h , registers $34 \mathrm{~h}-35 \mathrm{~h} \quad / /$ For customized packets, type 2
- MMD address 2 h , registers $36 \mathrm{~h}-37 \mathrm{~h} \quad / /$ For customized packets, type 3

Link Status Change Detection

If link status change detection is enabled, the KSZ9031RNX asserts its PME output pin low whenever there is a link status change, using the following MMD address 2 h register bits and their enabled (1) or disabled (0) settings:

- MMD address 2 h , register 10h, bit [0] // For link-up detection
- MMD address 2 h , register 10h, bit [1] // For link-down detection

The PME output signal is available on either LED1/PME_N1 (pin 17) or INT_N/PME_N2 (pin 38), and is selected and enabled using MMD address 2 h , register 2 h , bits [8] and [10], respectively. Additionally, MMD address 2 h , register 10h, bits [15:14] defines the output functions for pins 17 and 38.
The PME output is active low and requires a $1 \mathrm{k} \Omega$ pull-up to the VDDIO supply. When asserted, the PME output is cleared by disabling the register bit that enabled the PME trigger source (magic packet, customized packet, link status change).

Typical Current/Power Consumption

Table 12 through Table 15 show the typical current consumption by the core (DVDDL, AVDDL, AVDDL_PLL), transceiver (AVDDH) and digital I/O (DVDDH) supply pins, and the total typical power for the entire KSZ9031RNX device for various nominal operating voltage combinations.

Transceiver (3.3V), Digital I/Os (3.3V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	3.3V Transceiver (AVDDH)	3.3V Digital I/Os (DVDDH)	Total Chip Power
	mA	$\mathbf{m A}$	$\mathbf{m A}$	mW
1000Base-T link-up (no traffic)	210	67.4	19.5	538
1000Base-T full-duplex @ 100\% utilization	221	66.3	41.5	621
100Base-TX link-up (no traffic)	63.6	28.7	13.9	217
100Base-TX full-duplex @ 100\% utilization	63.8	28.6	17.2	228
10Base-T link-up (no traffic)	7.1	15.9	11.5	99
10Base-T full-duplex @ 100\% utilization	7.7	28.6	13.7	149
EEE Mode - 1000Mbps	43.5	5.7	30.6	172
EEE Mode - 100Mbps (TX and RX in LPI)	25.6	5.3	18.1	108
Software power-down mode (Reg. Oh.11 = 1)	1.0	4.2	9.3	46

Table 12. Typical Current/Power Consumption - Transceiver (3.3V), Digital I/Os (3.3V)

Transceiver (3.3V), Digital I/Os (1.8V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	3.3V Transceiver (AVDDH)	1.8V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	$\mathbf{m W}$
1000Base-T link-up (no traffic)	210	67.4	11.2	494
1000Base-T full-duplex @ 100\% utilization	221	66.3	23.6	526
100Base-TX link-up (no traffic)	63.6	28.7	8.4	186
100Base-TX full-duplex @ 100\% utilization	63.8	28.6	9.8	189
10Base-T link-up (no traffic)	7.1	15.9	3.6	67
10Base-T full-duplex @ 100\% utilization	7.7	28.6	5.6	114
EEE Mode - 1000Mbps	43.5	5.7	15.9	100
EEE Mode - 100Mbps (TX and RX in LPI)	25.6	5.3	9.1	65
Software power-down mode (Reg. Oh.11 =1)	1.0	4.2	5.5	25

Table 13. Typical Current/Power Consumption - Transceiver (3.3V), Digital I/Os (1.8V)

Transceiver (2.5V), Digital I/Os (2.5V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	2.5V Transceiver (AVDDH - commercial temp only)	2.5V Digital I/Os (DVDDH)	Total Chip Power
	$\mathbf{m A}$	$\mathbf{m A}$	$\mathbf{m A}$	mW
1000Base-T link-up (no traffic)	210	58.8	14.7	435
1000Base-T full-duplex @ 100\% utilization	221	57.9	31.5	488
100Base-TX link-up (no traffic)	63.6	24.9	10.5	165
100Base-TX full-duplex @ 100\% utilization	63.8	24.9	13.0	171
10Base-T link-up (no traffic)	7.1	11.5	6.3	53
10Base-T full-duplex @ 100\% utilization	7.7	25.3	9.0	95
EEE Mode - 1000Mbps	43.5	4.5	23.6	122
EEE Mode-100Mbps (TX and RX in LPI)	25.6	4.1	13.8	75
Software power-down mode (Reg. Oh.11 =1)	1.0	3.1	6.7	26

Table 14. Typical Current/Power Consumption - Transceiver (2.5V), Digital I/Os (2.5V)

Transceiver (2.5V), Digital I/Os (1.8V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	2.5V Transceiver ${ }^{(1)}$ (AVDDH - commercial temp only)	1.8V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T link-up (no traffic)	210	58.8	11.2	419
1000Base-T full-duplex @ 100\% utilization	221	57.9	23.6	452
100Base-TX link-up (no traffic)	63.6	24.9	8.4	154
100Base-TX full-duplex @ 100\% utilization	63.8	24.9	9.8	156
10Base-T link-up (no traffic)	7.1	11.5	3.6	44
10Base-T full-duplex @ 100\% utilization	7.7	25.3	5.6	83
EEE Mode - 1000Mbps	43.5	4.5	15.9	92
EEE Mode-100Mbps (TX and RX in LPI)	25.6	4.1	9.1	57
Software power-down mode (Reg. Oh.11 =1)	1.0	3.1	5.5	19

Table 15. Typical Current/Power Consumption - Transceiver (2.5V), Digital I/Os (1.8V)

Note:

1. 2.5V AVDDH is recommended for commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ operation only.

Register Map

The register space within the KSZ9031RNX consists of two distinct areas.

- Standard registers // Direct register access
- MDIO manageable device (MMD) registers // Indirect register access

The KSZ9031RNX supports the following standard registers.

Register Number (Hex)	Description
IEEE-Defined Registers	
Oh	Basic Control
1h	Basic Status
2h	PHY Identifier 1
3h	PHY Identifier 2
4h	Auto-Negotiation Advertisement
5h	Auto-Negotiation Link Partner Ability
6h	Auto-Negotiation Expansion
7h	Auto-Negotiation Next Page
8h	Auto-Negotiation Link Partner Next Page Ability
9 h	1000Base-T Control
Ah	1000Base-T Status
Bh - Ch	Reserved
Dh	MMD Access - Control
Eh	MMD Access - Register/Data
Fh	Extended Status
Vendor-Specific Registers	
10h	Reserved
11h	Remote Loopback
12h	LinkMD Cable Diagnostic
13h	Digital PMA/PCS Status
14h	Reserved
15h	RXER Counter
16h-1Ah	Reserved
1Bh	Interrupt Control/Status
1Ch	Auto MDI/MDI-X
1Dh - 1Eh	Reserved
1Fh	PHY Control

Table 16. Standard Registers Supported by KSZ9031RNX

The KSZ9031RNX supports the following MMD device addresses and their associated register addresses, which make up the indirect MMD registers.

Device Address (Hex)	Register Address (Hex)	Description
1h	5Ah	1000Base-T Link-Up Time Control
2h	Oh	Common Control
	1h	Strap Status
	2h	Operation Mode Strap Override
	3h	Operation Mode Strap Status
	4h	RGMII Control Signal Pad Skew
	5 h	RGMII RX Data Pad Skew
	6h	RGMII TX Data Pad Skew
	8h	RGMII Clock Pad Skew
	10h	Wake-On-LAN - Control
	11h	Wake-On-LAN - Magic Packet, MAC-DA-0
	12h	Wake-On-LAN - Magic Packet, MAC-DA-1
	13h	Wake-On-LAN - Magic Packet, MAC-DA-2
	14h	Wake-On-LAN - Customized Packet, Type 0, Expected CRC 0
	15h	Wake-On-LAN - Customized Packet, Type 0, Expected CRC 1
	16h	Wake-On-LAN - Customized Packet, Type 1, Expected CRC 0
	17h	Wake-On-LAN - Customized Packet, Type 1, Expected CRC 1
	18h	Wake-On-LAN - Customized Packet, Type 2, Expected CRC 0
	19h	Wake-On-LAN - Customized Packet, Type 2, Expected CRC 1
	1Ah	Wake-On-LAN - Customized Packet, Type 3, Expected CRC 0
	1Bh	Wake-On-LAN - Customized Packet, Type 3, Expected CRC 1
	1Ch	Wake-On-LAN - Customized Packet, Type 0, Mask 0
	1Dh	Wake-On-LAN - Customized Packet, Type 0, Mask 1
	1Eh	Wake-On-LAN - Customized Packet, Type 0, Mask 2
	1Fh	Wake-On-LAN - Customized Packet, Type 0, Mask 3
	20h	Wake-On-LAN - Customized Packet, Type 1, Mask 0
	21h	Wake-On-LAN - Customized Packet, Type 1, Mask 1
	22h	Wake-On-LAN - Customized Packet, Type 1, Mask 2
	23h	Wake-On-LAN - Customized Packet, Type 1, Mask 3
	24h	Wake-On-LAN - Customized Packet, Type 2, Mask 0
	25h	Wake-On-LAN - Customized Packet, Type 2, Mask 1
	26h	Wake-On-LAN - Customized Packet, Type 2, Mask 2
	27h	Wake-On-LAN - Customized Packet, Type 2, Mask 3
	28h	Wake-On-LAN - Customized Packet, Type 3, Mask 0
	29h	Wake-On-LAN - Customized Packet, Type 3, Mask 1
	2Ah	Wake-On-LAN - Customized Packet, Type 3, Mask 2
	2Bh	Wake-On-LAN - Customized Packet, Type 3, Mask 3
3h	Oh	PCS EEE - Control
	1h	PCS EEE - Status
7h	3Ch	EEE Advertisement
	3Dh	EEE Link Partner Advertisement
1Ch	4h	Analog Control 4
	23h	EDPD Control

Table 17. MMD Registers Supported by KSZ9031RNX

Standard Registers

Standard registers provide direct read/write access to a 32 -register address space, as defined in Clause 22 of the IEEE 802.3 Specification. Within this address space, the first 16 registers (registers Oh to Fh) are defined according to the IEEE specification, while the remaining 16 registers (registers 10h to 1Fh) are defined specific to the PHY vendor.

IEEE Defined Registers - Descriptions

Address	Name	Description	Mode ${ }^{(1)}$	Default
Register Oh - Basic Control				
0.15	Reset	1 = Software PHY reset $0=$ Normal operation This bit is self-cleared after a ' 1 ' is written to it.	RW/SC	0
0.14	Loopback	$\begin{aligned} & 1=\text { Loopback mode } \\ & 0=\text { Normal operation } \end{aligned}$	RW	0
0.13	Speed Select (LSB)	$\begin{gathered} {[0.6,0.13]} \\ {[1,1]=\text { Reserved }} \\ {[1,0]=1000 \mathrm{Mbps}} \\ {[0,1]=100 \mathrm{Mbps}} \\ {[0,0]=10 \mathrm{Mbps}} \end{gathered}$ This bit is ignored if auto-negotiation is enabled (Reg. $0.12=1$).	RW	0
0.12	Auto- Negotiation Enable	1 = Enable auto-negotiation process $0=$ Disable auto-negotiation process If enabled, auto-negotiation result overrides settings in Reg. 0.13, 0.8 and 0.6.	RW	1
0.11	Power-Down	1 = Power-down mode $0=$ Normal operation	RW	0
0.10	Isolate	$\begin{aligned} & 1=\text { Electrical isolation of PHY from RGMII } \\ & 0=\text { Normal operation } \end{aligned}$	RW	0
0.9	Restart AutoNegotiation	1 = Restart auto-negotiation process 0 = Normal operation This bit is self-cleared after a ' 1 ' is written to it.	RW/SC	0
0.8	Duplex Mode	$\begin{aligned} & 1=\text { Full-duplex } \\ & 0=\text { Half-duplex } \end{aligned}$	RW	1
0.7	Reserved	Reserved	RW	0
0.6	Speed Select (MSB)	$\begin{aligned} & {[0.6,0.13] } \\ & {[1,1] }=\text { Reserved } \\ & {[1,0] }=1000 \mathrm{Mbps} \\ & {[0,1] }=100 \mathrm{Mbps} \\ & {[0,0] }=10 \mathrm{Mbps} \end{aligned}$ This bit is ignored if auto-negotiation is enabled (Reg. $0.12=1$).	RW	Set by MODE[3:0] strapping pins. See the "Strapping Options" section for details.
0.5:0	Reserved	Reserved	RO	00_0000

Address	Name	Description	Mode ${ }^{(1)}$	Default
Register 1h - Basic Status				
1.15	100Base-T4	$\begin{aligned} & 1=\mathrm{T} 4 \text { capable } \\ & 0=\text { Not } \mathrm{T} 4 \text { capable } \end{aligned}$	RO	0
1.14	100Base-TX Full-Duplex	1 = Capable of 100Mbps full-duplex $0=$ Not capable of 100 Mbps full-duplex	RO	1
1.13	100Base-TX Half-Duplex	1 = Capable of 100 Mbps half-duplex $0=$ Not capable of 100 Mbps half-duplex	RO	1
1.12	10Base-T Full-Duplex	1 = Capable of 10 Mbps full-duplex $0=$ Not capable of 10Mbps full-duplex	RO	1
1.11	10Base-T Half-Duplex	1 = Capable of 10 Mbps half-duplex $0=$ Not capable of 10 Mbps half-duplex	RO	1
1.10:9	Reserved	Reserved	RO	00
1.8	Extended Status	$\begin{aligned} & 1=\text { Extended status info in Reg. 15h. } \\ & 0=\text { No extended status info in Reg. } 15 \mathrm{~h} . \end{aligned}$	RO	1
1.7	Reserved	Reserved	RO	0
1.6	No Preamble	$\begin{aligned} & 1=\text { Preamble suppression } \\ & 0=\text { Normal preamble } \end{aligned}$	RO	1
1.5	AutoNegotiation Complete	1 = Auto-negotiation process completed $0=$ Auto-negotiation process not completed	RO	0
1.4	Remote Fault	$\begin{aligned} & 1=\text { Remote fault } \\ & 0=\text { No remote fault } \end{aligned}$	RO/LH	0
1.3	Auto- Negotiation Ability	1 = Can perform auto-negotiation $0=$ Cannot perform auto-negotiation	RO	1
1.2	Link Status	$\begin{aligned} & 1=\text { Link is up } \\ & 0=\text { Link is down } \end{aligned}$	RO/LL	0
1.1	Jabber Detect	$\begin{aligned} & 1=\text { Jabber detected } \\ & 0=\text { Jabber not detected (default is low) } \end{aligned}$	RO/LH	0
1.0	Extended Capability	1 = Supports extended capability registers	RO	1
Register 2h - PHY Identifier 1				
2.15:0	PHY ID Number	Assigned to bits [3:18] of the organizationally unique identifier (OUI). KENDIN Communication's OUI is 0010A1h.	RO	0022h
Register 3h - PHY Identifier 2				
3.15:10	PHY ID Number	Assigned to bits [19:24] of the organizationally unique identifier (OUI). KENDIN Communication's OUI is 0010A1h.	RO	0001_01
3.9:4	Model Number	Six-bit manufacturer's model number	RO	10_0010
3.3:0	Revision Number	Four-bit manufacturer's revision number	RO	Indicates silicon revision
Register 4h - Auto-Negotiation Advertisement				
4.15	Next Page	$\begin{aligned} & 1=\text { Next page capable } \\ & 0=\text { No next page capability } \end{aligned}$	RW	0

Address	Name	Description	Mode ${ }^{(1)}$	Default
4.14	Reserved	Reserved	RO	0
4.13	Remote Fault	1 = Remote fault supported 0 = No remote fault	RW	0
4.12	Reserved	Reserved	RO	0
4.11:10	Pause	$\begin{aligned} & {[4.11,4.10]} \\ & {[0,0]=\text { No pause }} \\ & {[1,0]=\text { Asymmetric pause (link partner) }} \\ & {[0,1]=\text { Symmetric pause }} \\ & {[1,1]=} \\ & \quad \begin{array}{l} \text { Symmetric and asymmetric pause } \\ \\ \text { (local device) } \end{array} \\ & \hline \end{aligned}$	RW	00
4.9	100Base-T4	$\begin{aligned} & 1=\text { T4 capable } \\ & 0=\text { No T4 capability } \end{aligned}$	RO	0
4.8	100Base-TX Full-Duplex	$\begin{aligned} & 1=100 \mathrm{Mbps} \text { full-duplex capable } \\ & 0=\text { No } 100 \mathrm{Mbps} \text { full-duplex capability } \end{aligned}$	RW	1
4.7	100Base-TX Half-Duplex	$1=100 \mathrm{Mbps}$ half-duplex capable $0=$ No 100Mbps half-duplex capability	RW	1
4.6	10Base-T Full-Duplex	$1=10 \mathrm{Mbps}$ full-duplex capable $0=$ No 10Mbps full-duplex capability	RW	1
4.5	10Base-T Half-Duplex	$1=10 \mathrm{Mbps}$ half-duplex capable $0=$ No 10Mbps half-duplex capability	RW	1
4.4:0	Selector Field	[00001] = IEEE 802.3	RW	0_0001

Register 5h - Auto-Negotiation Link Partner Ability

5.15	Next Page	1 = Next page capable $0=$ No next page capability	RO	0
5.14	Acknowledge	1 = Link code word received from partner 0 = Link code word not yet received	RO	0
5.13	Remote Fault	1 = Remote fault detected $0=$ No remote fault	RO	0
5.12	Reserved	Reserved	RO	0
5.11:10	Pause	$\begin{aligned} & {[5.11,5.10]} \\ & {[0,0]=\text { No pause }} \\ & {[1,0]=\text { Asymmetric pause (link partner) }} \\ & {[0,1]=\text { Symmetric pause }} \\ & {[1,1]=\text { Symmetric and asymmetric pause }} \\ & \text { (local device) } \end{aligned}$	RW	00
5.9	100Base-T4	$\begin{aligned} & 1=\mathrm{T} 4 \text { capable } \\ & 0=\text { No T4 capability } \end{aligned}$	RO	0
5.8	100Base-TX Full-Duplex	$1=100 \mathrm{Mbps}$ full-duplex capable $0=$ No 100Mbps full-duplex capability	RO	0
5.7	100Base-TX Half-Duplex	$\begin{aligned} & 1=100 \mathrm{Mbps} \text { half-duplex capable } \\ & 0=\text { No 100Mbps half-duplex capability } \end{aligned}$	RO	0
5.6	10Base-T Full-Duplex	$1=10 \mathrm{Mbps}$ full-duplex capable 0 = No 10Mbps full-duplex capability	RO	0

Address	Name	Description	Mode $^{(\mathbf{1})}$	Default
5.5	10Base-T Half-Duplex	$1=10 \mathrm{Mbps}$ half-duplex capable $0=$ No 10Mbps half-duplex capability	RO	0
$5.4: 0$	Selector Field	$[00001]$ = IEEE 802.3	RO	$0 _0000$

Register 6h - Auto-Negotiation Expansion

$6.15: 5$	Reserved	Reserved	RO	$0000 _0000 _000$
6.4	Parallel Detection Fault	$1=$ Fault detected by parallel detection $0=$ No fault detected by parallel detection	$\mathrm{RO} / \mathrm{LH}$	0
6.3	Link Partner Next Page Able	$1=$ Link partner has next page capability $0=$ Link partner does not have next page capability	RO	0
6.2	Next Page Able	$1=$ Local device has next page capability $0=$ Local device does not have next page capability	RO	1
6.1	Page Received	$1=$ New page received $0=$ New page not received Link Partner Auto- Negotiation Able	$1=$ Link partner has auto-negotiation capability $0=$ Link partner does not have auto-negotiation capability	RO

Register 7h - Auto-Negotiation Next Page

7.15	Next Page	$1=$ Additional next pages will follow $0=$ Last page	RW	0
7.14	Reserved	Reserved	RO	0
7.13	Message Page	$1=$ Message page $0=$ Unformatted page	RW	1
7.12	Toggle	$1=$ Previous value of the transmitted link code word equaled logic one $0=$ Will comply with message 0.11	Rogic zero	0
$7.10: 0$	Message Field	11 -bit wide field to encode 2048 messages	RW	$000 _0000 _0001$

Register 8h - Auto-Negotiation Link Partner Next Page Ability

8.15	Next Page	$1=$ Additional next pages will follow $0=$ Last page	RO	0
8.14	Acknowledge	$1=$ Successful receipt of link word $0=$ No successful receipt of link word	RO	0
8.13	Acknowledge2	$1=$ Able to act on the information $0=$ Not able to act on the information $0=$ Unformatted page 8.12	Toggle	$1=$ Previous value of transmitted link code word equal to logic zero $0=$ Previous value of transmitted link code word equal to logic one

Address	Name	Description	Mode ${ }^{(1)}$	Default
Register 9h-1000Base-T Control				
9.15:13	Test Mode Bits	Transmitter test mode operations $[9.15: 13]$ Mode $[000]$ Normal operation $[001]$ Test mode 1 -Transmit waveform test $[010]$ Test mode 2-Transmit jitter test in master mode $[011]$ Test mode 3-Transmit jitter test in slave mode $[100]$ Test mode 4-Transmitter distortion test $[101]$ Reserved, operations not identified $[110]$ Reserved, operations not identified $[111]$ Reserved, operations not identified	RW	000
9.12	Master-Slave Manual Configuration Enable	1 = Enable master-slave manual configuration value 0 = Disable master-slave manual configuration value	RW	0
9.11	Master-Slave Manual Configuration Value	1 = Configure PHY as master during masterslave negotiation 0 = Configure PHY as slave during masterslave negotiation This bit is ignored if master-slave manual configuration is disabled (Reg. $9.12=0$).	RW	0
9.10	Port Type	1 = Indicate the preference to operate as multiport device (master) $0=$ Indicate the preference to operate as singleport device (slave) This bit is valid only if master-slave manual configuration is disabled (Reg. $9.12=0$).	RW	0
9.9	1000Base-T Full-Duplex	```1 = Advertise PHY is 1000Base-T full-duplex capable 0 = Advertise PHY is not 1000Base-T full- duplex capable```	RW	1
9.8	1000Base-T Half-Duplex	```1 = Advertise PHY is 1000Base-T half-duplex capable 0 = Advertise PHY is not 1000Base-T half- duplex capable```	RW	Set by MODE[3:0] strapping pins. See the "Strapping Options" section for details.
9.7:0	Reserved	Write as 0, ignore on read	RO	-
Register Ah - 1000Base-T Status				
A. 15	Master-Slave Configuration Fault	1 = Master-slave configuration fault detected $0=$ No master-slave configuration fault detected	RO/LH/SC	0

Address	Name	Description	Mode ${ }^{(1)}$	Default
A. 14	Master-Slave Configuration Resolution	```1 = Local PHY configuration resolved to master 0 = Local PHY configuration resolved to slave```	RO	0
A. 13	Local Receiver Status	$\begin{aligned} & 1=\text { Local receiver OK (loc_rcvr_status = 1) } \\ & 0=\text { Local receiver not OK (loc_rcvr_status = 0) } \end{aligned}$	RO	0
A. 12	Remote Receiver Status	```1 = Remote receiver OK (rem_rcvr_status = 1) 0 = Remote receiver not OK (rem_rcvr_status = 0)```	RO	0
A. 11	Link Partner 1000Base-T Full-Duplex Capability	```1 = Link partner is capable of 1000Base-T full- duplex 0 = Link partner is not capable of 1000Base-T full-duplex```	RO	0
A. 10	Link Partner 1000Base-T Half-Duplex Capability	```1 = Link partner is capable of 1000Base-T half- duplex 0 = Link Partner is not capable of 1000Base-T half-duplex```	RO	0
A.9:8	Reserved	Reserved	RO	00
A.7:0	Idle Error Count	Cumulative count of errors detected when receiver is receiving idles and PMA_TXMODE.indicate $=$ SEND_N. The counter is incremented every symbol period that rxerror_status = ERROR.	RO/SC	0000_0000
Register Dh - MMD Access - Control				
D.15:14	MMD Operation Mode	For the selected MMD device address (bits [4:0] of this register), these two bits select one of the following register or data operations and the usage for MMD Access - Register/Data (Reg. Eh). $00=$ Register 01 = Data, no post increment $10=$ Data, post increment on reads and writes 11 = Data, post increment on writes only	RW	00
D.13:5	Reserved	Reserved	RW	00_0000_000
D.4:0	MMD Device Address	These five bits set the MMD device address.	RW	0_0000
Register Eh - MMD Access - Register/Data				
E.15:0	$\begin{aligned} & \text { MMD - } \\ & \text { Register/Data } \end{aligned}$	For the selected MMD device address (Reg. Dh, bits [4:0]), When Reg. Dh, bits [15:14] $=00$, this register contains the read/write register address for the MMD device address. Otherwise, this register contains the read/write data value for the MMD device address and its selected register address. See also Reg. Dh, bits [15:14], for descriptions of post increment reads and writes of this register for data operation.	RW	0000_0000_0000_0000

Address	Name	Description	Mode ${ }^{(1)}$	Default
Register Fh - Extended Status				
F. 15	$\begin{aligned} & \text { 1000Base-X } \\ & \text { Full-Duplex } \end{aligned}$	$\begin{aligned} 1= & \text { PHY can perform 1000Base-X } \\ & \text { full-duplex } \\ 0= & \text { PHY cannot perform 1000Base-X full- } \\ & \text { duplex } \end{aligned}$	RO	0
F. 14	1000Base-X Half-Duplex	$\begin{aligned} & \hline 1= \text { PHY can perform 1000Base-X } \\ & \text { half-duplex } \\ & 0= \text { PHY cannot perform 1000Base-X } \\ & \text { half-duplex } \end{aligned}$	RO	0
F. 13	1000Base-T Full-Duplex	$\begin{aligned} & 1= \text { PHY can perform 1000Base-T } \\ & \text { full-duplex } \\ & 0= \text { PHY cannot perform 1000Base-T } \\ & \text { full-duplex } \end{aligned}$	RO	1
F. 12	1000Base-T Half-Duplex	```1 = PHY can perform 1000Base-T half-duplex 0 = PHY cannot perform 1000Base-T half-duplex```	RO	1
F.11:0	Reserved	Ignore when read	RO	-

Note:

1. $\mathrm{RW}=$ Read/Write.

RO = Read only.
SC = Self-cleared.
LH = Latch high.
LL = Latch low.

Vendor-Specific Registers - Descriptions

Address	Name	Description	Mode ${ }^{(1)}$	Default
Register 11h - Remote Loopback				
11.15:9	Reserved	Reserved	RW	0000_000
11.8	Remote Loopback	1 = Enable remote loopback 0 = Disable remote loopback	RW	0
11.7:1	Reserved	Reserved	RW	1111_010
11.0	Reserved	Reserved	RO	0
Register 12h - LinkMD - Cable Diagnostic				
12.15	Cable Diagnostic Test Enable	Write value: 1 = Enable cable diagnostic test. After test has completed, this bit is self-cleared. $0=$ Disable cable diagnostic test. Read value: 1 = Cable diagnostic test is in progress. $0=$ Indicates cable diagnostic test (if enabled) has completed and the status information is valid for read.	RW/SC	0
12.14	Reserved	This bit should always be set to ' 0 '.	RW	0

Address	Name	Description	Mode ${ }^{(1)}$	Default
12.13:12	Cable Diagnostic Test Pair	These two bits select the differential pair for testing: $00=$ Differential pair A (pins 2, 3) 01 = Differential pair B (pins 5, 6) $10=$ Differential pair C (pins 7, 8) 11 = Differential pair D (pins 10, 11)	RW	00
12.11:10	Reserved	These two bits should always be set to '00'.	RW	00
12.9:8	Cable Diagnostic Status	These two bits represent the test result for the selected differential pair in bits [13:12] of this register. $00=$ Normal cable condition (no fault detected) 01 = Open cable fault detected $10=$ Short cable fault detected 11 = Reserved	RO	00
12.7:0	Cable Diagnostic Fault Data	For the open or short cable fault detected in bits [9:8] of this register, this 8-bit value represents the distance to the cable fault.	RO	0000_0000
Register 13h - Digital PMA/PCS Status				
13.15:3	Reserved	Reserved	RO/LH	0000_0000_0000_0
13.2	1000Base-T Link Status	1000Base-T link status 1 = Link status is OK $0=$ Link status is not OK	RO	0
13.1	100Base-TX Link Status	100Base-TX link status $1=$ Link status is OK $0=$ Link status is not OK	RO	0
13.0	Reserved	Reserved	RO	0
Register 15h - RXER Counter				
15.15:0	RXER Counter	Receive error counter for symbol error frames	RO/RC	0000_0000_0000_0000
Register 1Bh - Interrupt Control/Status				
1B. 15	Jabber Interrupt Enable	1 = Enable jabber interrupt 0 = Disable jabber interrupt	RW	0
1B. 14	Receive Error Interrupt Enable	1 = Enable receive error interrupt 0 = Disable receive error interrupt	RW	0
1B. 13	Page Received Interrupt Enable	1 = Enable page received interrupt $0=$ Disable page received interrupt	RW	0
1B. 12	Parallel Detect Fault Interrupt Enable	1 = Enable parallel detect fault interrupt $0=$ Disable parallel detect fault interrupt	RW	0
1B. 11	Link Partner Acknowledge Interrupt Enable	1 = Enable link partner acknowledge interrupt 0 = Disable link partner acknowledge interrupt	RW	0
1B. 10	Link-Down Interrupt Enable	1 = Enable link-down interrupt 0 = Disable link-down interrupt	RW	0

Address	Name	Description	Mode ${ }^{(1)}$	Default
1B. 9	Remote Fault Interrupt Enable	1 = Enable remote fault interrupt 0 = Disable remote fault interrupt	RW	0
1B. 8	Link-Up Interrupt Enable	1 = Enable link-up interrupt 0 = Disable link-up interrupt	RW	0
1B. 7	Jabber Interrupt	$\begin{aligned} & 1 \text { = Jabber occurred } \\ & 0=\text { Jabber did not occur } \end{aligned}$	RO/RC	0
1B. 6	Receive Error Interrupt	$\begin{aligned} & 1=\text { Receive error occurred } \\ & 0=\text { Receive error did not occur } \end{aligned}$	RO/RC	0
1B. 5	Page Receive Interrupt	1 = Page receive occurred $0=$ Page receive did not occur	RO/RC	0
1B. 4	Parallel Detect Fault Interrupt	1 = Parallel detect fault occurred $0=$ Parallel detect fault did not occur	RO/RC	0
1B. 3	Link Partner Acknowledge Interrupt	1 = Link partner acknowledge occurred 0 = Link partner acknowledge did not occur	RO/RC	0
1B. 2	Link-Down Interrupt	1 = Link-down occurred 0 = Link-down did not occur	RO/RC	0
1B. 1	Remote Fault Interrupt	1 = Remote fault occurred 0 = Remote fault did not occur	RO/RC	0
1B. 0	Link-Up Interrupt	$1=$ Link-up occurred $0=$ Link-up did not occur	RO/RC	0
Register 1Ch - Auto MDI/MDI-X				
1C.15:8	Reserved	Reserved	RW	0000_0000
1C. 7	MDI Set	When Swap-Off (bit [6] of this register) is asserted (1), $1=\mathrm{PHY}$ is set to operate as MDI mode $0=\mathrm{PHY}$ is set to operate as MDI-X mode This bit has no function when Swap-Off is deasserted (0).	RW	0
1C. 6	Swap-Off	1 = Disable Auto MDI/MDI-X function 0 = Enable Auto MDI/MDI-X function	RW	0
1C.5:0	Reserved	Reserved	RW	00_0000
Register 1Fh - PHY Control				
1F. 15	Reserved	Reserved	RW	0
1F. 14	Interrupt Level	$\begin{aligned} & 1=\text { Interrupt pin active high } \\ & 0=\text { Interrupt pin active low } \end{aligned}$	RW	0
1F.13:12	Reserved	Reserved	RW	00
1F.11:10	Reserved	Reserved	RO/LH/RC	00
1F. 9	Enable Jabber	1 = Enable jabber counter 0 = Disable jabber counter	RW	1
1F.8:7	Reserved	Reserved	RW	00
1F. 6	Speed Status 1000Base-T	1 = Indicate chip final speed status at 1000Base-T	RO	0

Address	Name	Description	Mode ${ }^{(1)}$	Default
1F. 5	Speed Status 100Base-TX	1 = Indicate chip final speed status at 100Base-TX	RO	0
1F. 4	Speed Status 10Base-T	1 = Indicate chip final speed status at 10Base-T	RO	0
1F. 3	Duplex Status	Indicate chip duplex status $\begin{aligned} & 1 \text { = Full-duplex } \\ & 0=\text { Half-duplex } \end{aligned}$	RO	0
1F. 2	1000Base-T Master/Slave Status	Indicate chip master/slave status $\begin{aligned} & 1=1000 \text { Base }-T \text { master mode } \\ & 0=1000 \text { Base-T slave mode } \end{aligned}$	RO	0
1F. 1	Reserved	Reserved	RW	0
1F. 0	Link Status Check Fail	$\begin{aligned} & 1=\text { Fail } \\ & 0=\text { Not failing } \end{aligned}$	RO	0

Note:

1. $\mathrm{RW}=$ Read/Write.

RC = Read-cleared
RO = Read only.
SC = Self-cleared.
$\mathrm{LH}=$ Latch high.

MMD Registers

MMD registers provide indirect read/write access to up to 32 MMD Device Addresses with each device supporting up to 65,536 16-bit registers, as defined in Clause 22 of the IEEE 802.3 Specification. The KSZ9031RNX, however, uses only a small fraction of the available registers. See the "Register Map" section for a list of supported MMD device addresses and their associated register addresses.

The following two standard registers serve as the portal registers to access the indirect MMD registers.

- Standard register Dh - MMD Access - Control
- Standard register Eh - MMD Access - Register/Data

Address	Name	Description	Mode	Default
Register Dh - MMD Access - Control				
D.15:14	MMD - Operation Mode	For the selected MMD device address (bits [4:0] of this register), these two bits select one of the following register or data operations and the usage for MMD Access - Register/Data (Reg. Eh). $00=$ Register 01 = Data, no post increment $10=$ Data, post increment on reads and writes 11 = Data, post increment on writes only	RW	00
D.13:5	Reserved	Reserved	RW	00_0000_000
D.4:0	MMD - Device Address	These five bits set the MMD device address.	RW	0_0000
Register Eh - MMD Access - Register/Data				
E.15:0	MMD Register/Data	For the selected MMD device address (Reg. Dh, bits [4:0]), When Reg. Dh, bits [15:14] $=00$, this register contains the read/write register address for the MMD device address. Otherwise, this register contains the read/write data value for the MMD device address and its selected register address. See also Register Dh, bits [15:14] descriptions for post increment reads and writes of this register for data operation.	RW	0000_0000_0000_0000

Table 18. Portal Registers (Access to Indirect MMD Registers)

Examples:

- MMD Register Write

Write MMD - Device Address 2 h , Register $10 \mathrm{~h}=0001 \mathrm{~h}$ to enable link-up detection to trigger PME for WOL.

1. Write register Dh with 0002h
2. Write register Eh with 0010h
3. Write register Dh with 4002 h
4. Write register Eh with 0001h
// Set up register address for MMD - Device Address 2h.
// Select register 10h of MMD - Device Address 2h.
// Select register data for MMD - Device Address 2h, Register 10h.
// Write value 0001h to MMD - Device Address 2h, Register 10h.

- MMD Register Read

Read MMD - Device Address 2h, Register 11h - 13h for the magic packet's MAC address

1. Write register Dh with 0002 h
2. Write register Eh with 0011h
3. Write register Dh with 8002h
4. Read register Eh
5. Read register Eh
6. Read register Eh
// Set up register address for MMD - Device Address 2h.
// Select register 11h of MMD - Device Address 2h.
// Select register data for MMD - Device Address 2h, Register 11h.
// Read data in MMD - Device Address 2h, Register 11h.
// Read data in MMD - Device Address 2h, Register 12h.
// Read data in MMD - Device Address 2h, Register 13h.

MMD Registers - Descriptions

Address	Name	Description	Mode ${ }^{(1)}$	Default
MMD Address 1h, Register 5Ah-1000Base-T Link-Up Time Control				
1.5A.15:9	Reserved	Reserved	RO	0000_000
1.5A.8:4	Reserved	Reserved	RW	1_0000
1.5A.3:1	1000Base-T Link-Up Time	When the link partner is another KSZ9031 device, the 1000Base-T link-up time can be long. These three bits provide an optional setting to reduce the 1000Base-T link-up time. 100 = Default power-up setting 011 = Optional setting to reduce link-up time when the link partner is a KSZ9031 device. All other settings are reserved and should not be used. The optional setting is safe to use with any link partner. Note: Read/Write access to this register bit is available only when Reg. Oh is set to 0×2100 to disable auto-negotiation and force 100Base-TX mode.	RW	100
1.5A.0	Reserved	Reserved	RW	0
MMD Address 2h, Register Oh - Common Control				
2.0.15:4	Reserved	Reserved	RW	0000_0000_0000
2.0.3	LED Mode	Override strap-in for LED_MODE 1 = Single-LED mode $0=\mathrm{Bi}$-color dual-LED mode	RW	Set by LED_MODE strapping pin. See the "Strapping Options" section for details.
2.0.2	Reserved	Reserved	RW	0
2.0.1	CLK125_EN Status	Override strap-in for CLK125_EN 1 = CLK125_EN strap-in is enabled $0=$ CLK125_EN strap-in is disabled	RW	Set by CLK125_EN strapping pin. See the "Strapping Options" section for details.
2.0.0	Reserved	Reserved	RW	0
MMD Address 2h, Register 1h - Strap Status				
2.1.15:8	Reserved	Reserved	RO	0000_0000

Address	Name	Description	Mode ${ }^{(1)}$	Default
2.1.7	LED_MODE Strap-In Status	Strap to 1 = Single-LED mode 0 = Bi-color dual-LED mode	RO	Set by LED_MODE strapping pin. See the "Strapping Options" section for details.
2.1.6	Reserved	Reserved	RO	0
2.1.5	$\begin{aligned} & \hline \text { CLK125_EN } \\ & \text { Strap-In Status } \end{aligned}$	Strap to 1 = CLK125_EN strap-in is enabled $0=$ CLK125_EN strap-in is disabled	RO	Set by CLK125_EN strapping pin. See the "Strapping Options" section for details.
2.1.4:3	Reserved	Reserved	RO	00
2.1.2:0	PHYAD[2:0] Strap-In Value	Strap-in value for PHY address Bits [4:3] of PHY address are always set to ' 00 '.	RO	Set by PHYAD[2:0] strapping pin. See the "Strapping Options" section for details.
MMD Address 2h, Register 2h-Operation Mode Strap Override				
2.2.15	RGMII All Capabilities Override	1 = Override strap-in for RGMII to advertise all capabilities	RW	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.2.14	$\begin{aligned} & \text { RGMII No } \\ & \text { 1000BT_HD } \\ & \text { Override } \end{aligned}$	1 = Override strap-in for RGMII to advertise all capabilities except 1000Base-T half-duplex	RW	
2.2.13	RGMII 1000BT_H/FD Only Override	1 = Override strap-in for RGMII to advertise 1000Base-T full- and half-duplex only	RW	
2.2.12	$\begin{aligned} & \hline \text { RGMII } \\ & \text { 1000BT_FD } \\ & \text { Only Override } \end{aligned}$	1 = Override strap-in for RGMII to advertise 1000Base-T full-duplex only	RW	
2.2.11	Reserved	Reserved	RW	0
2.2.10	PME_N2 Output Enable	For INT_N/PME_N2 (pin 38), 1 = Enable PME output 0 = Disable PME output This bit works in conjunction with MMD Address 2h, Reg. 10h, Bits [15:14] to define the output for pin 38.	RW	0
2.2 .9	Reserved	Reserved	RW	0
2.2.8	PME_N1 Output Enable	For LED1/PME_N1 (pin 17), 1 = Enable PME output 0 = Disable PME output This bit works in conjunction with MMD Address 2 h , Reg. 10h, Bits [15:14] to define the output for pin 17.	RW	0
2.2.7	Chip PowerDown Override	1 = Override strap-in for chip power-down mode	RW	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.2.6:5	Reserved	Reserved	RW	00
2.2.4	NAND Tree Override	1 = Override strap-in for NAND Tree mode	RW	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.2.3:0	Reserved	Reserved	RW	0000

Address	Name	Description	Mode ${ }^{(1)}$	Default
MMD Address 2h, Register 3h- Operation Mode Strap Status				
2.3.15	RGMII All Capabilities Strap-In Status	1 = Strap to RGMII to advertise all capabilities	RO	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.3.14	$\begin{aligned} & \text { RGMII No } \\ & \text { 1000BT_HD } \\ & \text { Strap-In_Status } \end{aligned}$	1 = Strap to RGMII to advertise all capabilities except 1000Base-T half-duplex	RO	
2.3.13	RGMII Only 1000BT_H/FD Strap-In Status	1 = Strap to RGMII to advertise 1000Base-T full-and half-duplex only	RO	
2.3.12	RGMII Only 1000BT_FD Strap-In Status	1 = Strap to RGMII to advertise 1000Base-T full-duplex only	RO	
2.3.11:8	Reserved	Reserved	RO	0000
2.3.7	Chip PowerDown Strap-In Status	1 = Strap to chip power-down mode	RO	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.3.6:5	Reserved	Reserved	RO	00
2.3.4	NAND Tree Strap-In Status	1 = Strap to NAND Tree mode	RO	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.3.3:0	Reserved	Reserved	RO	0000
MMD Address 2h, Register 4h - RGMII Control Signal Pad Skew				
2.4.15:8	Reserved	Reserved	RW	0000_0000
2.4.7:4	RX_DV Pad Skew	RGMII RX_CTL output pad skew control (0.06ns/step)	RW	0111
2.4.3:0	TX_EN Pad Skew	RGMII TX_CTL input pad skew control (0.06ns/step)	RW	0111
MMD Address 2h, Register 5h - RGMII RX Data Pad Skew				
2.5.15:12	RXD3 Pad Skew	RGMII RXD3 output pad skew control (0.06ns/step)	RW	0111
2.5.11:8	RXD2 Pad Skew	RGMII RXD2 output pad skew control (0.06ns/step)	RW	0111
2.5.7:4	RXD1 Pad Skew	RGMII RXD1 output pad skew control (0.06ns/step)	RW	0111
2.5.3:0	RXD0 Pad Skew	RGMII RXDO output pad skew control (0.06ns/step)	RW	0111
MMD Address 2h, Register 6h - RGMII TX Data Pad Skew				
2.6.15:12	TXD3 Pad Skew	RGMII TXD3 output pad skew control (0.06ns/step)	RW	0111
2.6.11:8	TXD2 Pad Skew	RGMII TXD2 output pad skew control (0.06ns/step)	RW	0111
2.6.7:4	TXD1 Pad Skew	RGMII TXD1 output pad skew control (0.06ns/step)	RW	0111
2.6.3:0	TXD0 Pad Skew	RGMII TXDO output pad skew control (0.06ns/step)	RW	0111

Address	Name	Description	Mode ${ }^{(1)}$	Default
MMD Address 2h, Register 8h-RGMII Clock Pad Skew				
2.8.15:10	Reserved	Reserved	RW	0000_00
2.8.9:5	$\begin{aligned} & \text { GTX_CLK } \\ & \text { Pad Skew } \end{aligned}$	RGMII GTX_CLK input pad skew control (0.06ns/step)	RW	01_111
2.8.4:0	RX_CLK Pad Skew	RGMII RX_CLK output pad skew control (0.06ns/step)	RW	0_1111
MMD Address 2h, Register 10h - Wake-On-LAN - Control				
2.10.15:14	PME Output Select	These two bits work in conjunction with MMD Address 2h, Reg. 2h, Bits [8] and [10] for PME_N1 and PME_N2 enable, to define the output for pins 17 and 38 , respectively. ```LED1/PME_N1 (pin 17) 00 = PME_N1 output only 01 = LED1 output only 10 = LED1 and PME_N1 output 11 = Reserved INT_N/PME_N2 (pin 38) 00 = PME_N2 output only 01 = INT_N output only 10 = INT_N and PME_N2 output 11 = Reserved```	RW	00
2.10.13:7	Reserved	Reserved	RW	00_0000_0
2.10.6	Magic Packet Detect Enable	1 = Enable magic-packet detection 0 = Disable magic-packet detection	RW	0
2.10 .5	Custom- Packet Type 3 Detect Enable	1 = Enable custom-packet, Type 3 detection 0 = Disable custom-packet, Type 3 detection	RW	0
2.10.4	Custom- Packet Type 2 Detect Enable	1 = Enable custom-packet, Type 2 detection 0 = Disable custom-packet, Type 2 detection	RW	0
2.10.3	Custom- Packet Type 1 Detect Enable	1 = Enable custom-packet, Type 1 detection 0 = Disable custom-packet, Type 1 detection	RW	0
2.10.2	Custom- Packet Type 0 Detect Enable	1 = Enable custom-packet, Type 0 detection 0 = Disable custom-packet, Type 0 detection	RW	0
2.10 .1	Link-Down Detect Enable	1 = Enable link-down detection 0 = Disable link-down detection	RW	0
2.10 .0	Link-Up Detect Enable	1 = Enable link-up detection 0 = Disable link-up detection	RW	0

Address	Name	Description	Mode ${ }^{(1)}$	Default
MMD Address 2h, Register 11h - Wake-On-LAN - Magic Packet, MAC-DA-0				
2.11.15:0	Magic Packet MAC-DA-0	This register stores the lower two bytes of the destination MAC address for the magic packet. Bit [15:8] = Byte 2 (MAC Address [15:8]) Bit [7:0] = Byte 1 (MAC Address [7:0]) The upper four bytes of the destination MAC address are stored in the following two registers.	RW	0000_0000_0000_0000
MMD Address 2h, Register 12h - Wake-On-LAN - Magic Packet, MAC-DA-1				
2.12.15:0	Magic Packet MAC-DA-1	This register stores the middle two bytes of the destination MAC address for the magic packet. Bit $[15: 8]=$ Byte 4 (MAC Address [31:24]) Bit [7:0] = Byte 3 (MAC Address [23:16]) The lower two bytes and upper two bytes of the destination MAC address are stored in the previous and following registers, respectively.	RW	0000_0000_0000_0000
MMD Address 2h, Register 13h - Wake-On-LAN - Magic Packet, MAC-DA-2				
2.13.15:0	Magic Packet MAC-DA-2	This register stores the upper two bytes of the destination MAC address for the magic packet. Bit [15:8] = Byte 6 (MAC Address [47:40]) Bit [7:0] = Byte 5 (MAC Address [39:32]) The lower four bytes of the destination MAC address are stored in the previous two registers.	RW	0000_0000_0000_0000
MMD Address 2 h , Register 14h - Wake-On-LAN - Customized Packet, Type 0, Expected CRC 0 MMD Address 2h, Register 16h - Wake-On-LAN - Customized Packet, Type 1, Expected CRC 0 MMD Address 2h, Register 18h - Wake-On-LAN - Customized Packet, Type 2, Expected CRC 0 MMD Address 2h, Register 1Ah - Wake-On-LAN - Customized Packet, Type 3, Expected CRC 0				
$\begin{aligned} & \text { 2.14.15:0 } \\ & 2.16 .15: 0 \\ & 2.18 .15: 0 \\ & 2.1 A .15: 0 \end{aligned}$	Custom Packet Type X CRC 0	This register stores the lower two bytes for the expected CRC. Bit [15:8] = Byte 2 (CRC [15:8]) Bit [7:0] = Byte 1 (CRC [7:0]) The upper two bytes for the expected CRC are stored in the following register.	RW	0000_0000_0000_0000
MMD Address 2 h , Register 15h - Wake-On-LAN - Customized Packet, Type 0, Expected CRC 1 MMD Address 2 h , Register 17h - Wake-On-LAN - Customized Packet, Type 1, Expected CRC 1 MMD Address 2h, Register 19h - Wake-On-LAN - Customized Packet, Type 2, Expected CRC 1 MMD Address 2h, Register 1Bh - Wake-On-LAN - Customized Packet, Type 3, Expected CRC 1				
$\begin{aligned} & \text { 2.15.15:0 } \\ & \text { 2.17.15:0 } \\ & \text { 2.19.15:0 } \\ & \text { 2.1B.15:0 } \end{aligned}$	Custom Packet Type X CRC 1	This register stores the upper two bytes for the expected CRC. Bit [15:8] = Byte 4 (CRC [31:24]) Bit [7:0] = Byte 3 (CRC [23:16]) The lower two bytes for the expected CRC are stored in the previous register.	RW	0000_0000_0000_0000

Address	Name	Description	Mode ${ }^{(1)}$	Default
MMD Address 2h, Register 1Ch - Wake-On-LAN - Customized Packet, Type 0, Mask 0 MMD Address 2h, Register 20h - Wake-On-LAN - Customized Packet, Type 1, Mask 0 MMD Address 2h, Register 24h - Wake-On-LAN - Customized Packet, Type 2, Mask 0 MMD Address 2h, Register 28h - Wake-On-LAN - Customized Packet, Type 3, Mask 0				
$\begin{aligned} & \hline 2.1 \mathrm{C} .15: 0 \\ & 2.20 .15: 0 \\ & 2.24 .15: 0 \\ & 2.28 .15: 0 \end{aligned}$	Custom Packet Type X Mask 0	This register selects the bytes in the first 16 bytes of the packet (bytes 1 thru 16) that will be used for CRC calculation. For each bit in this register, 1 = Byte is selected for CRC calculation $0=$ Byte is not selected for CRC calculation The register-bit to packet-byte mapping is as follows: Bit [15] : Byte 16 Bit [2] : Byte 2 Bit [0] : Byte 1	RW	0000_0000_0000_0000
MMD Address 2h, Register 1Dh - Wake-On-LAN - Customized Packet, Type 0, Mask 1 MMD Address 2h, Register 21h - Wake-On-LAN - Customized Packet, Type 1, Mask 1 MMD Address 2h, Register 25h - Wake-On-LAN - Customized Packet, Type 2, Mask 1 MMD Address 2h, Register 29h - Wake-On-LAN - Customized Packet, Type 3, Mask 1				
$\begin{aligned} & \text { 2.1D.15:0 } \\ & 2.21 .15: 0 \\ & 2.25 .15: 0 \\ & 2.29 .15: 0 \end{aligned}$	Custom Packet Type X Mask 1	This register selects the bytes in the second 16 bytes of the packet (bytes 17 thru 32) that will be used for CRC calculation. For each bit in this register, 1 = Byte is selected for CRC calculation $0=$ Byte is not selected for CRC calculation The register-bit to packet-byte mapping is as follows: Bit [15] : Byte 32 Bit [2] : Byte 18 Bit [0] : Byte 17	RW	0000_0000_0000_0000

Address	Name	Description	Mode ${ }^{(1)}$	Default
MMD Address 2h, Register 1Eh - Wake-On-LAN - Customized Packet, Type 0, Mask 2 MMD Address 2h, Register 22h - Wake-On-LAN - Customized Packet, Type 1, Mask 2 MMD Address 2h, Register 26h - Wake-On-LAN - Customized Packet, Type 2, Mask 2 MMD Address 2h, Register 2Ah - Wake-On-LAN - Customized Packet, Type 3, Mask 2				
$\begin{aligned} & \hline 2.1 \mathrm{E} .15: 0 \\ & 2.22 .15: 0 \\ & 2.26 .15: 0 \\ & 2.2 \mathrm{~A} .15: 0 \end{aligned}$	Custom Packet Type X Mask 2	This register selects the bytes in the third 16 bytes of the packet (bytes 33 thru 48) that will be used for CRC calculation. For each bit in this register, $1=$ Byte is selected for CRC calculation $0=$ Byte is not selected for CRC calculation The register-bit to packet-byte mapping is as follows: Bit [15] : Byte 48 Bit [2] : Byte 34 Bit [0] : Byte 33	RW	0000_0000_0000_0000

MMD Add MMD Add MMD Add MMD Add	2h, Register 1F 2h, Register 23 2h, Register 27 2h, Register 2B	- Wake-On-LAN - Customized Packet, Typ - Wake-On-LAN - Customized Packet, Type - Wake-On-LAN - Customized Packet, Typ - Wake-On-LAN - Customized Packet, Typ		
$\begin{aligned} & \text { 2.1F.15:0 } \\ & 2.23 .15: 0 \\ & 2.27 .15: 0 \\ & \text { 2.2B.15:0 } \end{aligned}$	Custom Packet Type X Mask 3	This register selects the bytes in the fourth 16 bytes of the packet (bytes 49 thru 64) that will be used for CRC calculation. For each bit in this register, 1 = Byte is selected for CRC calculation $0=$ Byte is not selected for CRC calculation The register-bit to packet-byte mapping is as follows: Bit [15] : Byte 64 Bit [2] : Byte 50 Bit [0] : Byte 49	RW	0000_0000_0000_0000
MMD Address 3h, Register Oh - PCS EEE - Control				
3.0.15:12	Reserved	Reserved	RW	0000
3.0.11	$\begin{aligned} & \text { 1000Base-T } \\ & \text { Force LPI } \end{aligned}$	$\begin{aligned} & 1=\text { Force 1000Base-T low-power idle } \\ & \quad \text { transmission } \\ & 0=\text { Normal operation } \end{aligned}$	RW	0
3.0.10	$\begin{aligned} & \text { 100Base-TX } \\ & \text { RX_CLK } \\ & \text { Stoppable } \end{aligned}$	During receive lower-power idle mode, 1 = RX_CLK stoppable for 100Base-TX $0=R X$ _CLK not stoppable for 100Base-TX	RW	0
3.0.9:0	Reserved	Reserved	RW	00_0000_0000

Address	Name	Description	Mode ${ }^{(1)}$	Default
MMD Address 3h, Register 1h - PCS EEE - Status				
3.1.15:12	Reserved	Reserved	RO	0000
3.1.11	Transmit LowPower Idle Received	1 = Transmit PCS has received low-power idle 0 = Low-power idle not received	RO/LH	0
3.1.10	Receive LowPower Idle Received	1 = Receive PCS has received low-power idle 0 = Low-power idle not received	RO/LH	0
3.1.9	Transmit LowPower Idle Indication	```1 = Transmit PCS is currently receiving low- power idle 0 = Transmit PCS is not currently receiving low- power idle```	RO	
3.1.8	Receive LowPower Idle Indication	1 = Receive PCS is currently receiving lowpower idle $0=$ Receive PCS is not currently receiving lowpower idle	RO	
3.1.7:0	Reserved	Reserved	RO	0000_0000
MMD Address 7h, Register 3Ch - EEE Advertisement				
7.3C.15:3	Reserved	Reserved	RW	0000_0000_0000_0
7.3C. 2	$\begin{aligned} & \text { 1000Base-T } \\ & \text { EEE } \end{aligned}$	1 = 1000Mbps EEE capable $0=$ No 1000Mbps EEE capability This bit is set to ' 0 ' as the default after power-up or reset. Set this bit to ' 1 ' to enable 1000 Mbps EEE mode.	RW	0
7.3C.1	$\begin{aligned} & \text { 100Base-TX } \\ & \text { EEE } \end{aligned}$	$1=100 \mathrm{Mbps}$ EEE capable $0=$ No 100Mbps EEE capability This bit is set to ' 0 ' as the default after power-up or reset. Set this bit to ' 1 ' to enable 100 Mbps EEE mode.	RW	0
7.3C.0	Reserved	Reserved	RW	0
MMD Address 7h, Register 3Dh - EEE Link Partner Advertisement				
7.3D.15:3	Reserved	Reserved	RO	0000_0000_0000_0
7.3D. 2	$\begin{aligned} & \text { 1000Base-T } \\ & \text { EEE } \end{aligned}$	1 = 1000Mbps EEE capable $0=$ No 1000Mbps EEE capability	RO	0
7.3D.1	$\begin{aligned} & \text { 100Base-TX } \\ & \text { EEE } \end{aligned}$	$\begin{aligned} & 1=100 \mathrm{Mbps} \text { EEE capable } \\ & 0=\text { No } 100 \mathrm{Mbps} \text { EEE capability } \end{aligned}$	RO	0
7.3D.0	Reserved	Reserved	RO	0
MMD Address 1Ch, Register 4h - Analog Control 4				
1C.4.15:11	Reserved	Reserved	RW	0000_0
1C.4.10	10Base-Te Mode	$\begin{aligned} & 1=\text { EEE 10Base-Te (1.75V TX amplitude) } \\ & 0=\text { Standard 10Base-T (2.5V TX amplitude) } \end{aligned}$	RW	0
1C.4.9:0	Reserved	Reserved	RW	00_1111_1111

Address	Name	Description	Mode $^{(\mathbf{1})}$	Default
MMD Address 1Ch, Register 23h - EDPD Control				
1C.23.15:1	Reserved	Reserved	RW	0000_0000_0000_000
1C.23.0	EDPD Mode Enable	Energy-detect power-down mode $1=$ Enable $0=$ Disable	RW	0

Note:

1. $\mathrm{RW}=$ Read/Write.

RO = Read only.
LH = Latch high.

Absolute Maximum Ratings ${ }^{(1)}$

Supply Voltage (V_{IN})

(DVDDL, AVDDL, AVDDL_PLL)	-0.5V to +1.8V
(AVDDH)	-0.5 V to +5.0 V
(DVDDH)	-0.5 V to +5.0 V
put Voltage (all inputs)	-0.5V to +5.0 V
utput Voltage (all outputs)	-0.5V to +5.0V
d Temperature (soldering, 10s $260^{\circ} \mathrm{C}$
rage Temperature (T_{s})	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage
(DVDDL, AVDDL, AVDDL_PLL) +1.140V to +1.260V
(AVDDH @ 3.3V) +3.135 V to +3.465 V
(AVDDH @ 2.5V, C-temp only)....... +2.375 V to +2.625 V
(DVDDH @ 3.3V) +3.135V to +3.465V
(DVDDH @ 2.5V) +2.375V to +2.625V
(DVDDH @ 1.8V) +1.710V to +1.890V
Ambient Temperature
(T_{A} Commercial: KSZ9031RNXC) $\ldots \ldots0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
(T_{A} Industrial: KSZ9031RNXI)............... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J} Max) $125^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})36.34${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (θ_{Jc})9.47${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ${ }^{(3)}$

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
Supply Current - Core I Digital I/Os						
Icore	1.2V Total of: DVDDL (digital core) + AVDDL (analog core) + AVDDL_PLL (PLL)	1000Base-T link-up (no traffic)		210		mA
		1000Base-T full-duplex @ 100\% utilization		221		mA
		100Base-TX link-up (no traffic)		63.6		mA
		100Base-TX full-duplex @ 100\% utilization		63.8		mA
		10Base-T link-up (no traffic)		7.1		mA
		10Base-T full-duplex @ 100\% utilization		7.7		mA
		Software power-down mode (Reg. $0.11=1$)		1.0		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.7		mA
IDVDDH_1.8	1.8V for Digital I/Os (RGMII operating @ 1.8V)	1000Base-T link-up (no traffic)		11.2		mA
		1000Base-T full-duplex @ 100\% utilization		23.6		mA
		100Base-TX link-up (no traffic)		8.4		mA
		100Base-TX full-duplex @ 100\% utilization		9.8		mA
		10Base-T link-up (no traffic)		3.6		mA
		10Base-T full-duplex @ 100\% utilization		5.6		mA
		Software power-down mode (Reg. $0.11=1$)		5.5		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.3		mA

Notes:

1. Exceeding the absolute maximum rating can damage the device. Stresses greater than the absolute maximum rating can cause permanent damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.
2. The device is not guaranteed to function outside its operating rating.
3. $T_{A}=25^{\circ} \mathrm{C}$. Specification is for packaged product only.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
IDVDDH_2.5	2.5V for Digital I/Os (RGMII operating @ 2.5V)	1000Base-T link-up (no traffic)		14.7		mA
		1000Base-T full-duplex @ 100\% utilization		31.5		mA
		100Base-TX link-up (no traffic)		10.5		mA
		100Base-TX full-duplex @ 100\% utilization		13.0		mA
		10Base-T link-up (no traffic)		6.3		mA
		10Base-T full-duplex @ 100\% utilization		9.0		mA
		Software power-down mode (Reg. 0.11 = 1)		6.7		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.7		mA
IDVDDH_3.3	3.3V for Digital I/Os (RGMII operating @ 3.3V)	1000Base-T link-up (no traffic)		19.5		mA
		1000Base-T full-duplex @ 100\% utilization		41.5		mA
		100Base-TX link-up (no traffic)		13.9		mA
		100Base-TX full-duplex @ 100\% utilization		17.2		mA
		10Base-T link-up (no traffic)		11.5		mA
		10Base-T full-duplex @ 100\% utilization		13.7		mA
		Software power-down mode (Reg. $0.11=1$)		9.3		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		2.2		mA

Supply Current - Transceiver (equivalent to current draw through external transformer center taps for PHY transceivers with current-mode transmit drivers)

IAVDDH_2.5	2.5V for Transceiver (Recommended for commercial temperature range operation only)	1000Base-T link-up (no traffic)		58.8	mA
		1000Base-T full-duplex @ 100\% utilization		57.9	mA
		100Base-TX link-up (no traffic)		24.9	mA
		100Base-TX full-duplex @ 100\% utilization		24.9	mA
		10Base-T link-up (no traffic)		11.5	mA
		10Base-T full-duplex @ 100\% utilization		25.3	mA
		Software power-down mode (Reg. Oh, bit $11=1$)		3.1	mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.02	mA
IAVDDH_3.3	3.3V for Transceiver	1000Base-T link-up (no traffic)		67.4	mA
		1000Base-T full-duplex @ 100\% utilization		66.3	mA
		100Base-TX link-up (no traffic)		28.7	mA
		100Base-TX full-duplex @ 100\% utilization		28.6	mA
		10Base-T link-up (no traffic)		15.9	mA
		10Base-T full-duplex @ 100\% utilization		28.6	mA
		Software power-down mode (Reg. 0h, bit $11=1$)		4.2	mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.02	mA
CMOS Inputs					
V_{IH}	Input High Voltage	DVDDH (digital I/Os) $=3.3 \mathrm{~V}$	2.0		V
		DVDDH (digital I/Os) $=2.5 \mathrm{~V}$	1.5		V
		DVDDH (digital I / Os) $=1.8 \mathrm{~V}$	1.1		V

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units	
VIL	Input Low Voltage	DVDDH (digital I/Os) $=3.3 \mathrm{~V}$			1.3	V	
		DVDDH (digital I/Os) $=2.5 \mathrm{~V}$			1.0	V	
		DVDDH (digital I/Os) $=1.8 \mathrm{~V}$			0.7	V	
\|lin	Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{GND} \sim \mathrm{V}_{\text {DDIO }}$			10	$\mu \mathrm{A}$	
CMOS Outputs							
V ${ }_{\text {OH }}$	Output High Voltage	DVDDH (digital I/Os) $=3.3 \mathrm{~V}$	2.7			V	
		DVDDH (digital I/Os) $=2.5 \mathrm{~V}$	2.0			V	
		DVDDH (digital I/Os) $=1.8 \mathrm{~V}$	1.5			V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	DVDDH (digital I/Os) $=3.3 \mathrm{~V}$			0.3	V	
		DVDDH (digital I/Os) $=2.5 \mathrm{~V}$			0.3	V	
		DVDDH (digital I / Os) $=1.8 \mathrm{~V}$			0.3	V	
\|loz		Output Tri-State Leakage				10	$\mu \mathrm{A}$
LED Outputs							
$\mathrm{I}_{\text {Led }}$	Output Drive Current	Each LED pin (LED1, LED2)		8		mA	
Pull-Up Pins							
pu	Internal Pull-Up Resistance (MDC, MDIO, RESET_N pins)	DVDDH (digital I/Os) $=3.3 \mathrm{~V}$	13	22	31	$\mathrm{k} \Omega$	
		DVDDH (digital I/Os) $=2.5 \mathrm{~V}$	16	28	39	k Ω	
		DVDDH (digital I/Os) $=1.8 \mathrm{~V}$	26	44	62	$\mathrm{k} \Omega$	
100Base-TX Transmit (measured differentially after 1:1 transformer)							
V_{0}	Peak Differential Output Voltage	100Ω termination across differential output	0.95		1.05	V	
$\mathrm{V}_{\text {IMB }}$	Output Voltage Imbalance	100Ω termination across differential output			2	\%	
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise/Fall Time		3		5	ns	
	Rise/Fall Time Imbalance		0		0.5	ns	
	Duty Cycle Distortion				± 0.25	ns	
	Overshoot				5	\%	
	Output Jitter	Peak-to-peak		0.7		ns	
10Base-T Transmit (measured differentially after 1:1 transformer)							
V_{P}	Peak Differential Output Voltage	100Ω termination across differential output	2.2		2.8	V	
	Jitter Added	Peak-to-peak			3.5	ns	
	Harmonic Rejection	Transmit all-one signal sequence		-31		dB	
10Base-T Receive							
V_{SQ}	Squelch Threshold	5 MHz square wave	300	400		mV	
Transmitter - Drive Setting							
$V_{\text {SET }}$	Reference Voltage of ISET	$\mathrm{R}(\mathrm{I}$ SET $)=12.1 \mathrm{k} \Omega$		1.2		V	
LDO Controller - Drive Range							
	Output Drive Range for LDO_O (pin 43) to Gate Input of P-Channel MOSFET	AVDDH $=3.3 \mathrm{~V}$ for MOSFET source voltage	0.85		2.8	V	
VLDo_o		AVDDH $=2.5 \mathrm{~V}$ for MOSFET source voltage (recommended for commercial temperature range operation only)	0.85		2.0	V	

Timing Diagrams

RGMII Timing

The KSZ9031RNX RGMII timing conforms to the timing requirements in the RGMII Version 2.0 Specification.

Figure 12. RGMII v2.0 Specification (Figure 3 - Multiplexing and Timing Diagram)

Timing Parameter	Description	Min.	Typ.	Max.	Unit
TskewT	Data to clock output skew (at transmitter)	-500		500	ps
TskewR	Data to clock input skew (at receiver)	1.0		2.6	ns
Tcyc (1000Base-T)	Clock cycle duration for 1000Base-T	7.2	8	8.8	ns
Tcyc (100Base-TX)	Clock cycle duration for 100Base-TX	36	40	44	ns
Tcyc (10Base-T)	Clock cycle duration for 10Base-T	360	400	440	ns

Table 19. RGMII v2.0 Specification (Timing Specifics from Table 2)

Auto-Negotiation Timing

```
AUTO-NEGOTIATION
FAST LINK PULSE (FLP) TIMING
```


Figure 13. Auto-Negotiation Fast Link Pulse (FLP) Timing

Timing Parameter	Description	Min.	Typ.	Max.	Units
$\mathrm{t}_{\mathrm{BTB}}$	FLP burst to FLP burst	8	16	24	ms
$\mathrm{t}_{\text {FLPW }}$	FLP burst width		2		ms
t_{PW}	Clock/Data pulse width		100		ns
$\mathrm{t}_{\text {CTD }}$	Clock pulse to data pulse	55.5	64	69.5	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {CTC }}$	Clock pulse to clock pulse	111	128	139	$\mu \mathrm{~s}$
	Number of clock/data pulses per FLP burst	17		33	

Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters

MDC/MDIO Timing

Figure 14. MDC/MDIO Timing

Timing Parameter	Description	Min.	Typ.	Max.	Unit
t_{P}	MDC period		400		ns
$\mathrm{t}_{1 \text { MD1 }}$	MDIO (PHY input) setup to rising edge of MDC	10			ns
$\mathrm{t}_{\text {MD2 }}$	MDIO (PHY input) hold from rising edge of MDC	10			ns
$\mathrm{t}_{\text {MD3 }}$	MDIO (PHY output) delay from rising edge of MDC	0			ns

Table 21. MDC/MDIO Timing Parameters

Power-Up/Power-Down/Reset Timing

Figure 15. Power-Up/Power-Down/Reset Timing

Parameter	Description	Min	Max	Units
t_{VR}	Supply voltages rise time (must be monotonic)	200		$\mu \mathrm{~s}$
t_{SR}	Stable supply voltages to de-assertion of reset	10		ms
t_{Cs}	Strap-in pin configuration setup time	5		ns
t_{CH}	Strap-in pin configuration hold time	5		ns
t_{RC}	De-assertion of reset to strap-in pin output	6		ns
t_{PC}	Supply voltages cycle off-to-on time	150		ms

Table 22. Power-Up/Power-Down/Reset Timing Parameters
NOTE 1: The recommended power-up sequence is to have the transceiver (AVDDH) and digital I/O (DVDDH) voltages power up before the 1.2 V core (DVDDL, AVDDL, AVDDL_PLL) voltage. If the 1.2 V core must power up first, the maximum lead time for the 1.2 V core voltage with respect to the transceiver and digital I/O voltages should be $200 \mu \mathrm{~s}$.
There is no power sequence requirement between transceiver (AVDDH) and digital I/O (DVDDH) power rails.
The power-up waveforms should be monotonic for all supply voltages to the KSZ9031RNX.
NOTE 2: After the de-assertion of reset, wait a minimum of $100 \mu \mathrm{~s}$ before starting programming on the MIIM (MDC/MDIO) interface.

NOTE 3: The recommended power-down sequence is to have the 1.2 V core voltage power down before powering down the transceiver and digital I/O voltages.
Before the next power-up cycle, all supply voltages to the KSZ9031RNX should reach 0 V and there should be a minimum wait time of 150 ms from power-off to power-on.

Reset Circuit

The following reset circuit is recommended for powering up the KSZ9031RNX if reset is triggered by the power supply.

Figure 16. Recommended Reset Circuit

The following reset circuit is recommended for applications where reset is driven by another device (for example, the CPU or an FPGA). At power-on-reset, R, C, and D1 provide the necessary ramp rise time to reset the KSZ9031RNX device. The RST_OUT_N from the CPU/FPGA provides the warm reset after power-up.

Figure 17. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output

Reference Circuits - LED Strap-In Pins

The pull-up and pull-down reference circuits for the LED2/PHYAD1 and LED1/PHYADO strapping pins are shown in Figure 18 for 3.3 V and 2.5 V DVDDH.

Figure 18. Reference Circuits for LED Strapping Pins

For 1.8 V DVDDH, LED indication support is not recommended due to the low voltage. Without the LED indicator, the PHYAD1 and PHYADO strapping pins are functional with $10 \mathrm{k} \Omega$ pull-up to 1.8 V DVDDH for a value of 1 , and with $1.0 \mathrm{k} \Omega$ pull-down to ground for a value of 0 .

Reference Clock - Connection and Selection

A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ9031RNX. The reference clock is 25 MHz for all operating modes of the KSZ9031RNX.
Figure 19 and Table 23 shows the reference clock connection to XI and XO of the KSZ9031RNX, and the reference clock selection criteria.

Figure 19. 25MHz Crystal/Oscillator Reference Clock Connection

Characteristics	Value	Units
Frequency	25	MHz
Frequency tolerance (max)	± 50	ppm

Table 23. Reference Crystal/Clock Selection Criteria

Magnetic - Connection and Selection

A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs exceeding FCC requirements. An optional auto-transformer stage following the chokes provides additional common-mode noise and signal attenuation.
The KSZ9031RNX design incorporates voltage-mode transmit drivers and on-chip terminations.
With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the four differential pairs. Therefore, the four transformer center tap pins on the KSZ9031RNX side should not be connected to any power supply source on the board; rather, the center tap pins should be separated from one another and connected through separate $0.1 \mu \mathrm{~F}$ common-mode capacitors to ground. Separation is required because the common-mode voltage could be different between the four differential pairs, depending on the connected speed mode.
Figure 20 shows the typical gigabit magnetic interface circuit for the KSZ9031RNX.

Figure 20. Typical Gigabit Magnetic Interface Circuit

Table 24 lists recommended magnetic characteristics.

Parameter	Value	Test Condition
Turns ratio	$1 \mathrm{CT}: 1 \mathrm{CT}$	
Open-circuit inductance (min.)	$350 \mu \mathrm{H}$	$100 \mathrm{mV}, 100 \mathrm{kHz}, 8 \mathrm{~mA}$
Insertion loss (max.)	1.0 dB	0 MHz to 100 MHz
HIPOT (min.)	1500 Vrms	

Table 24. Magnetics Selection Criteria

Table 25 is a list of compatible single-port magnetics with separated transformer center tap pins on the G-PHY chip side that can be used with the KSZ9031RNX.

Manufacturer	Part Number	Auto- Transformer	Temperature Range	Magnetic + RJ-45
Bel Fuse	0826-1G1T-23-F	Yes	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Yes
HALO	TG1G-E001NZRL	No	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	No
HALO	TG1G-S001NZRL	No	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	No
HALO	TG1G-S002NZRL	Yes	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	No
Pulse	H5007NL	Yes	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	No
Pulse	H5062NL	Yes	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	No
Pulse	HX5008NL	Yes	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	No
Pulse	JK0654219NL	Yes	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Yes
Pulse	JK0-0136NL	No	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Yes
TDK	TLA-7T101LF	No	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	No
Wurth/Midcom	$000-7093-37 R-L F 1$	Yes	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	No

Table 25. Compatible Single-Port 10/100/1000 Magnetics

Recommended Land Pattern

Figure 21. Recommended Land Pattern, 48 -Pin ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$) QFN

Red circles indicate thermal vias. They should be 0.350 mm in diameter and be connected to the GND plane for maximum thermal performance.
Green rectangles (with shaded area) indicate solder stencil openings on the exposed pad area. They should be $0.93 \times 0.93 \mathrm{~mm}$ in size, 1.13 mm pitch.

Package Information

NOTE:

1) TSLP AND SLP SHARE THE SAME EXPDSE DUTLINE BUT WITH DIFFERENT THICKNESS

		TSLP	SLP
A	MAX.	0.800	0.90 D
	NDM.	0.750	0.850
	MIIN.	0.700	0.800

48-Pin ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$) QFN

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2012 Micrel, Incorporated.

Стандарт Злектрон Связь

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:
Телефон: +7 8126271435
Электронная почта: sales@st-electron.ru
Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера H, помещение 100-Н Офис 331

[^0]: LinkMD is a registered trademark of Micrel, Inc.

