

PTC thermistors

Motor protection, single sensors

Series/Type: B59100 Date: March 2006

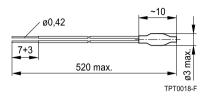
© EPCOS AG 2006. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Motor protection, single sensors

M1100

Applications

- Thermal protection of winding in electric motors
- Limit temperature monitoring


Features

- Thermistor pellet with insulating encapsulation
- Low-resistance type, steep R/T curve
- Silver-plated and Teflon-insulated AWG 26 litz wires
- Extremely fast response due to small dimensions
- Characteristics for nominal threshold temperatures T_{NTT} = 90 up to 160 °C conform with DIN 44081
- Color coding of litz wires to DIN 44081
- UL approval to UL 1434 (file number E69802)
- RoHS-compatible

Delivery mode

■ Bulk

Dimensional drawing

Dimensions in mm

General technical data

Max. operating voltage	(T _A = 0 40 °C)	V_{max}	30	VDC
Max. measuring voltage	$(T_{A} = -25 ^{\circ}\text{C} T_{NTT} + 23 \text{K})$	$V_{\text{meas,max}}$	7.5	VDC
Rated resistance	$(V_{PTC} \le 2.5 \text{ V})$	R_R	≤100	Ω
Insulating test voltage		V_{ins}	2.5	kVAC
Thermal threshold time		ta	<3	s
Operating temperature range	$(V \le V_{meas,max})$	T _{op}	$-25/T_{NTT}+23$	°C
Operating temperature range	$(V = V_{max})$	T _{op}	0/+40	°C

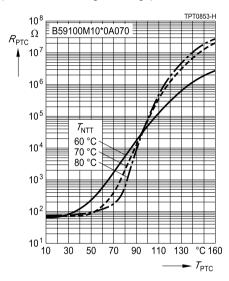
Electrical specifications and ordering codes

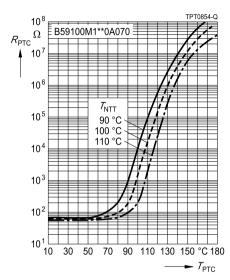
T _{NTT}	R	R	R	R	Ordering code
	$(T_{NTT} - \Delta T)$	$(T_{NTT} + \Delta T)$	$(T_{NTT} + 15 K)$	$(T_{NTT} + 23 \text{ K})$	
	(V _{PTC} ≤ 2.5 V)	(V _{PTC} ≤ 2.5 V)	(V _{PTC} ≤ 7.5 V)	(V _{PTC} ≤ 2.5 V)	
°C	Ω	Ω	Ω	Ω	
$\Delta T = 5 K$					
60	≤ 570	≥ 570	=	≥ 10 k	B59100M1060A070
70	≤ 570	≥ 570	-	≥ 10 k	B59100M1070A070
80	≤ 570	≥ 570	-	≥ 10 k	B59100M1080A070
90	≤ 550	≥ 1330	$\geq 4 \text{ k}$	-	B59100M1090A070
100	≤ 550	≥ 1330	≥ 4 k	-	B59100M1100A070

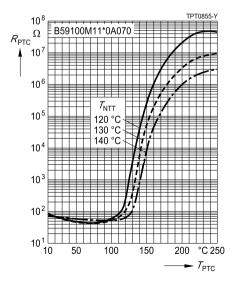
Sensors	
Motor protection, single sensors	M1100

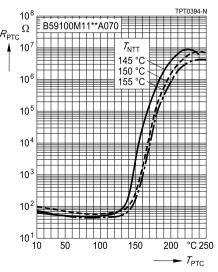
T _{NTT}	R	R	R	R	Ordering code
	$(T_{NTT} - \Delta T)$	$(T_{NTT} + \Delta T)$	(T _{NTT} + 15 K)	(T _{NTT} + 23 K)	
	$(V_{PTC} \le 2.5 \text{ V})$	$(V_{PTC} \le 2.5 V)$	(V _{PTC} ≤ 7.5 V)	(V _{PTC} ≤ 2.5 V)	
°C	Ω	Ω	Ω	Ω	
110	≤ 550	≥ 1330	≥ 4 k	-	B59100M1110A070
120	≤ 550	≥ 1330	≥ 4 k	-	B59100M1120A070
130	≤ 550	≥ 1330	≥ 4 k	-	B59100M1130A070
140	≤ 550	≥ 1330	≥ 4 k	-	B59100M1140A070
145	≤ 550	≥ 1330	≥ 4 k	-	B59100M1145A070
150	≤ 550	≥ 1330	≥ 4 k	-	B59100M1150A070
155	≤ 550	≥ 1330	≥ 4 k	-	B59100M1155A070
160	≤ 550	≥ 1330	≥ 4 k	-	B59100M1160A070
$\Delta T = 7 K$					
170	≤ 570	≥ 570	-	≥ 10 k	B59100M1170A070
180	≤ 570	≥ 570	-	≥ 10 k	B59100M1180A070
190	≤ 570	≥ 570	-	≥ 10 k	B59100M1190A070

Color coding of litz wires (to DIN 44081)

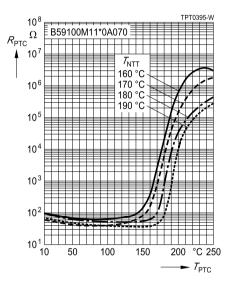

T _{NTT}	Color
°C	
60	white/grey
70	white/brown
80	white/white
90	green/green
100	red/red
110	brown/brown
120	grey/grey
130	blue/blue
140	white/blue
145	white/black
150	black/black
155	blue/black
160	blue/red
170	white/green
180	white/red
190	black/grey


Motor protection, single sensors


M1100


Characteristics (typical)

PTC resistance R_{PTC} versus PTC temperature T_{PTC} (measured at low signal voltage)



Motor protection, single sensors

M1100

Characteristics (typical)

PTC resistance R_{PTC} versus PTC temperature T_{PTC} (measured at low signal voltage)

Motor protection, single sensors

M1100

Cautions and warnings

General

- EPCOS thermistors are designed for specific applications and should not be used for purposes not identified in our specifications, application notes and data books unless otherwise agreed with EPCOS during the design-in-phase.
- Ensure suitability of thermistor through reliability testing during the design-in phase. The thermistors should be evaluated taking into consideration worst-case conditions.

Storage

- Store thermistors only in original packaging. Do not open the package before storage.
- Storage conditions in original packaging: storage temperature −25 °C ... +45 °C, relative humidity ≤75% annual mean, maximum 95%, dew precipitation is inadmissible.
- Avoid contamination of thermistors surface during storage, handling and processing.
- Avoid storage of thermistor in harmful environment with effect on function on long-term operation (examples given under operation precautions).
- Use thermistor within 6 months after delivery.

Handling

- PTCs must not be dropped. Chip-offs must not be caused during handling of PTCs.
- Components must not be touched with bare hands. Gloves are recommended.
- Avoid contamination of thermistor surface during handling.

Solderina

- Use rosin-type flux or non-activated flux.
- Insufficient preheating may cause ceramic cracks.
- Rapid cooling by dipping in solvent is not recommended.
- Complete removal of flux is recommended.

Mounting

- Electrode must not be scratched before/during/after the mounting process.
- Contacts and housing used for assembly with thermistor have to be clean before mounting. Especially grease or oil must be removed.
- When PTC thermistors are encapsulated with sealing material, the precautions given in chapter "Mounting instructions", "Sealing and potting" must be observed.
- When the thermistor is mounted, there must not be any foreign body between the electrode of the thermistor and the clamping contact.
- The minimum force of the clamping contacts pressing against the PTC must be 10 N.
- During operation, the thermistor's surface temperature can be very high. Ensure that adjacent components are placed at a sufficient distance from the thermistor to allow for proper cooling at the thermistors.
- Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of thermistor. Be sure that surrounding parts and materials can withstand this temperature.
- Avoid contamination of thermistor surface during processing.

Motor protection, single sensors

M1100

Operation

- Use thermistors only within the specified temperature operating range.
- Use thermistors only within the specified voltage and current ranges.
- Environmental conditions must not harm the thermistors. Use thermistors only in normal atmospheric conditions. Avoid use in deoxidizing gases (chlorine gas, hydrogen sulfide gas, ammonia gas, sulfuric acid gas etc), corrosive agents, humid or salty conditions. Contact with any liquids and solvents should be prevented.
- Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by abnormal function (e.g. use VDR for limitation of overvoltage condition).

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- The trade names EPCOS, EPCOS-JONES, Baoke, CeraDiode, CSSP, MLSC, PhaseCap, PhaseMod, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, UltraCap, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331