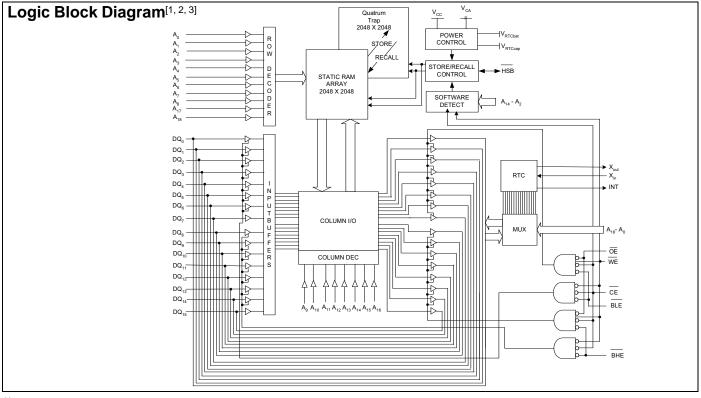


CY14B104K, CY14B104M

4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock

Features


- 25 ns and 45 ns Access Times
- Internally Organized as 512K x 8 (CY14B104K) or 256K x 16 (CY14B104M)
- Hands Off Automatic STORE on Power Down with only a Small Capacitor
- STORE to QuantumTrap Nonvolatile Elements is Initiated by Software, Device Pin, or AutoStore on Power Down
- RECALL to SRAM is Initiated by Software or Power Up
- High Reliability
- Infinite Read, Write, and RECALL Cycles
- 1 Million STORE Cycles to QuantumTrap
- 20 year Data Retention
- Single 3V +20%, -10% Operation
- Data Integrity of Cypress nvSRAM combined with Full Featured Real Time Clock (RTC)

- Watchdog Timer
- Clock Alarm with Programmable Interrupts
- Capacitor or Battery Backup for RTC
- Industrial Temperature
- 44 and 54-Pin TSOP II Package
- Pb-free and RoHS Compliance

Functional Description

The Cypress CY14B104K and CY14B104M combines a 4 Mbit nonvolatile static RAM with a full featured RTC in a monolithic integrated circuit. The embedded nonvolatile elements incorporate QuantumTrap technology producing the world's most reliable nonvolatile memory. The SRAM is read and written infinite number of times, while independent nonvolatile data resides in the nonvolatile elements.

The RTC function provides an accurate clock with leap year tracking and a programmable, high accuracy oscillator. The alarm function is programmable for periodic minutes, hours, days, or months alarms. There is also a programmable watchdog timer for process control.

Notes

- 1. Address $A_0 A_{18}$ for x8 configuration and Address $A_0 A_{17}$ for x16 configuration.
- 2. Data DQ₀ DQ₇ for x8 configuration and Data DQ₀ DQ₁₅ for x16 configuration.

٠

3. BHE and BLE are applicable for x16 configuration only.

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised December 08, 2009

CY14B104K, CY14B104M

Contents

Features	1
Functional Description	1
Logic Block Diagram	1
Contents	2
Device Operation	4
SRAM Read	4
SRAM Write	4
AutoStore Operation	4
Hardware STORE (HSB) Operation	5
Hardware RECALL (Power Up)	5
Software STORE	5
Software RECALL	5
Preventing AutoStore	6
Best Practices	7
Data Protection	8
Noise Considerations	8
Real Time Clock Operation	8
nvTIME Operation	
Clock Operations	
Reading the Clock	
Setting the Clock	
Backup Power	
Stopping and Starting the Oscillator	
Calibrating the Clock	
Alarm	
Watchdog Timer	9

Power Monitor	10
Interrupts	10
Flags Register	10
Maximum Ratings	16
Operating Range	16
DC Electrical Characteristics	16
Data Retention and Endurance	
Capacitance	
Thermal Resistance	
AC Test Conditions	17
RTC Characteristics	18
AC Switching Characteristics	19
Switching Waveforms	19
Switching Waveforms	21
AutoStore/Power Up RECALL	22
Switching Waveforms	22
Software Controlled STORE and RECALL Cycle	23
Hardware STORE Cycle	24
Truth Table For SRAM Operations	25
For x8 Configuration	
Ordering Information	26
Package Diagrams	27
Sales, Solutions, and Legal Information	33
Worldwide Sales and Design Support	
Products	

Pinouts

Figure 1. Pin Diagram - 44-PIn and 54-Pin TSOP II

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{bmatrix} 4 & & & \\ & & & $	 ○ 54 53 50 49 48 47 46 43 Top View (not to scale) 41 40 39 38 37 36 35 34 33 32 31 30 29 28 	$ \begin{array}{c} HSB \\ HC \\ NC \\ I \\ $
--	--	--	--

Table 1. Pin Definitions

Pin Name	I/O Type	Description
$A_0 - A_{18}$	Input	Address Inputs Used to Select One of the 524,288 bytes of the nvSRAM for x8 Configuration.
$A_0 - A_{17}$		Address Inputs Used to Select One of the 262,144 words of the nvSRAM for x16 Configuration.
$DQ_0 - DQ_7$	Input/Output	Bidirectional Data I/O Lines for x8 Configuration. Used as input or output lines depending on operation.
$DQ_0 - DQ_{15}$		Bidirectional Data I/O Lines for x16 Configuration. Used as input or output lines depending on operation.
NC	No Connect	No Connects. This pin is not connected to the die.
WE	Input	Write Enable Input, Active LOW. When selected LOW, data on the I/O pins is written to the specific address location.
CE	Input	Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
ŌĒ	Input	Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read cycles. Deasserting OE HIGH causes the I/O pins to tristate.
BHE	Input	Byte High Enable, Active LOW. Controls DQ ₁₅ - DQ ₈ .
BLE	Input	Byte Low Enable, Active LOW. Controls DQ7 - DQ0.
X _{out}	Output	Crystal Connection. Drives crystal on startup.
X _{in}	Input	Crystal Connection. For 32.768 kHz crystal.
V _{RTCcap}	Power Supply	Capacitor Supplied Backup RTC Supply Voltage. Left unconnected if V _{RTCbat} is used.
V _{RTCbat}	Power Supply	Battery Supplied Backup RTC Supply Voltage. Left unconnected if V _{RTCcap} is used.

Notes

Address expansion for 8 Mbit. NC pin not connected to die.
 Address expansion for 16 Mbit. NC pin not connected to die.

Table 1.	Pin Definitions	(continued)
----------	-----------------	-------------

Pin Name	I/O Type	Description
INT	Output	Interrupt Output . Programmable to respond to the clock alarm, the watchdog timer, and the power monitor. Also programmable to either active HIGH (push or pull) or LOW (open drain).
V _{SS}	Ground	Ground for the Device. Must be connected to ground of the system.
V _{CC}	Power Supply	Power Supply Inputs to the Device. 3.0V +20%, -10%
HSB	Input/Output	Hardware STORE Busy (HSB). When LOW this output indicates that a Hardware STORE is in progress. When pulled LOW external to the chip it initiates a nonvolatile STORE operation. A weak internal pull <u>up resistor</u> keeps this pin HIGH if not connected (connection optional). After each STORE operation HSB is driven HIGH for short time with standard output high current.
V _{CAP}	Power Supply	AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to nonvolatile elements.

Device Operation

The CY14B104K/CY14B104M nvSRAM is made up of two functional components paired in the same physical cell. These are a SRAM memory cell and a nonvolatile QuantumTrap cell. The SRAM memory cell operates as a standard fast static RAM. Data in the SRAM is transferred to the nonvolatile cell (the STORE operation), or from the nonvolatile cell to the SRAM (the RECALL operation). Using this unique architecture, all cells are stored and recalled in parallel. During the STORE and RECALL operations SRAM read and write operations are inhibited. The CY14B104K/CY14B104M supports infinite reads and writes similar to a typical SRAM. In addition, it provides infinite RECALL operations. See the Truth Table For SRAM Operations on page 25 for a complete description of read and write modes.

SRAM Read

<u>The CY14B104K/CY14B104M</u> performs a read cycle whenever CE and OE are LOW, and WE and HSB are HIGH. The address specified on pins A_{0-18} or A_{0-17} determines which of the 524,288 data bytes or 262,144 words of 16 bits each are accessed. Byte Enables (BHE, BLE) determine which bytes are enabled to the output, in the case of 16-bit words. When the read is initiated by an address transition, the outputs are valid after a delay of t_{AA} (read cycle 1). If the read is initiated by CE or OE, the outputs are valid at t_{ACE} or at t_{DOE} , whichever is later (read cycle 2). The data output repeatedly responds to address changes within the t_{AA} access time without the need for transitions on any control input pins. This remains valid until another address change or until CE or OE is brought HIGH, or WE or HSB is brought LOW.

SRAM Write

A write cycle is performed when \overline{CE} and \overline{WE} are LOW and \overline{HSB} is HIGH. The address inputs must be stable before entering the write cycle and must remain stable until \overline{CE} or \overline{WE} goes HIGH at the end of the cycle. The data on the common I/O pins DO_{0-15} are written into the memory if it is valid t_{SD} before the end of a \overline{WE} controlled write or before the end of a \overline{CE} controlled write. The Byte Enable inputs (BHE, BLE) determine which bytes are written, in the case of 16-bit words. Keep \overline{OE} HIGH during the entire write cycle to avoid data bus contention on common I/O lines. If \overline{OE} is left LOW, internal circuitry turns off the output buffers t_{HZWE} after WE goes LOW.

AutoStore Operation

The CY14B104K/CY14B104M stores data to the nvSRAM using one of three storage operations. The<u>se three</u> operations are: Hardware STORE, activated by the HSB; Software STORE, activated by an address sequence; AutoStore, on device power down. The AutoStore operation is a unique feature of QuantumTrap technology and is enabled by default on the CY14B104K/CY14B104M.

During normal operation, the device draws current from V_{CC} to charge a capacitor connected to the V_{CAP} pin. This stored charge is used by the chip to perform a single STORE operation. If the voltage on the V_{CC} pin drops below V_{SWITCH}, the part automatically disconnects the V_{CAP} pin from V_{CC}. A STORE operation is initiated with power provided by the V_{CAP} capacitor.

Note If the capacitor is not connected to V_{CAP} pin, AutoStore must be disabled using the soft sequence specified in Preventing AutoStore on page 6. In case AutoStore is enabled without a capacitor on V_{CAP} pin, the device attempts an AutoStore operation without sufficient charge to complete the Store. This may corrupt the data stored in nvSRAM.

Figure 2. AutoStore Mode

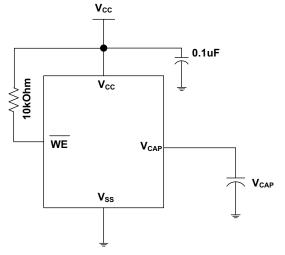


Figure 2 shows the proper connection of the storage capacitor (V_{CAP}) for automatic STORE operation. Refer to DC Electrical Characteristics on page 16 for the size of the V_{CAP}. The voltage on the V_{CAP} pin is driven to V_{CC} by a regulator on the chip. A pull up should be placed on WE to hold it inactive during power up. This pull up is only effective if the WE signal is tristate during power up. Many MPUs tristate their controls on power up. Verify this when using the pull up. When the nvSRAM comes out of power-on-recall, the MPU must be active or the WE held inactive until the MPU comes out of reset.

To reduce unnecessary nonvolatile STOREs, AutoStore, and Hardware STORE operations are ignored unless at least one write operation has taken place since the most recent STORE or RECALL cycle. Software initiated STORE cycles are performed regardless of whether a write operation has taken place. The HSB signal is monitored by the system to detect if an AutoStore cycle is in progress.

Hardware STORE (HSB) Operation

The CY14B104K/CY14B104M provides the $\overline{\text{HSB}}$ pin to control and acknowledge the STORE operations. The $\overline{\text{HSB}}$ pin is used to request a Hardware STORE cycle. When the HSB pin is driven LOW, the CY14B104K/CY14B104M conditionally initiates a STORE operation after t_{DELAY}. An actual STORE cycle begins only if a write to the SRAM has taken place since the last STORE or RECALL cycle. The HSB pin also acts as an open drain driver that is internally driven LOW to indicate a busy condition when the STORE (initiated by any means) is in progress.

SRAM write operations that are in progress when $\overline{\text{HSB}}$ is driven LOW by any means are given time (t_{DELAY}) to complete before the STORE operation is initiated. However, any SRAM write cycles requested after HSB goes LOW are in<u>hibited</u> until HSB returns HIGH. In case the write latch is not set, HSB is not driven LOW by the CY14B104K/CY14B104M. But any SRAM read and write cycles are inhibited until HSB is returned HIGH by MPU or other external source.

During any STORE operation, regardless of how it is <u>initia</u>ted, the CY14B104K/CY14B104M continues to drive the HSB pin LOW, releasing it only when the STORE is complete. Upon completion of the STORE operation, the CY14B104K/CY14B104M remains disabled until the HSB pin returns HIGH. Leave the HSB unconnected if it is not used.

Hardware RECALL (Power Up)

During power up or after any low power condition ($V_{CC} < V_{SWITCH}$), an internal RECALL request is latched. When V_{CC} again exceeds the V_{SWITCH} on powerup, a RECALL cycle is automatically initiated and takes $t_{HRECALL}$ to complete. During this time, the HSB pin is driven LOW by the HSB driver and all reads and writes to nvSRAM are inhibited.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by a software address sequence. The CY14B104K/CY14B104M <u>Software STORE cycle is initiated by executing sequential CE or</u> OE controlled read cycles from six specific address locations in exact order. During the STORE cycle, an erase of the previous nonvolatile data is first performed, followed by a program of the nonvolatile elements. After a STORE cycle is initiated, further input and output are disabled until the cycle is completed.

Because a sequence of reads from specific addresses is used for STORE initiation, it is important that no other read or write accesses intervene in the sequence, or the sequence is aborted and no STORE or RECALL takes place. To initiate the Software STORE cycle, the following read sequence must be performed:

- 1. Read address 0x4E38 Valid READ
- 2. Read address 0xB1C7 Valid READ
- 3. Read address 0x83E0 Valid READ
- 4. Read address 0x7C1F Valid READ
- 5. Read address 0x703F Valid READ
- 6. Read address 0x8FC0 Initiate STORE cycle

The software sequence may be clocked with \overline{CE} controlled reads or \overline{OE} controlled reads, with \overline{WE} kept HIGH for all the six READ sequences. After the sixth address in the sequence is entered, the STORE cycle commences and the chip is disabled. HSB is driven LOW. After the t_{STORE} cycle time is fulfilled, the SRAM is activated again for the read and write operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by a software address sequence. A software RECALL cycle is initiated with a sequence of read operations in a manner similar to the Software STORE initiation. To initiate the RECALL cycle, perform the following sequence of CE or OE controlled read operations:

- 1. Read address 0x4E38 Valid READ
- 2. Read address 0xB1C7 Valid READ
- 3. Read address 0x83E0 Valid READ
- 4. Read address 0x7C1F Valid READ
- 5. Read address 0x703F Valid READ
- 6. Read address 0x4C63 Initiate RECALL cycle

Internally, RECALL is a two step procedure. First, the SRAM data is cleared; then, the nonvolatile information is transferred into the SRAM cells. After the t_{RECALL} cycle time, the SRAM is again ready for read and write operations. The RECALL operation does not alter the data in the nonvolatile elements.

Table 2. Mode Selection

CE	WE	OE, BHE, BLE ^[3]	A ₁₅ - A ₀ ^[6]	Mode	I/O	Power
Н	Х	Х	Х	Not Selected	Output High Z	Standby
L	Н	L	Х	Read SRAM	Output Data	Active
L	L	Х	Х	Write SRAM	Input Data	Active
L	H	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x8B45	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM AutoStore Disable	Output Data Output Data Output Data Output Data Output Data Output Data	Active ^[7]
L	Н	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4B46	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM AutoStore Enable	Output Data Output Data Output Data Output Data Output Data Output Data	Active ^[7]
L	Н	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x8FC0	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile STORE	Output Data Output Data Output Data Output Data Output Data Output High Z	Active I _{CC2^[7]}
L	H	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4C63	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile RECALL	Output Data Output Data Output Data Output Data Output Data Output High Z	Active ^[7]

Preventing AutoStore

The AutoStore function is disabled by initiating an AutoStore disable sequence. A sequence of read operations is performed in a manner similar to the Software STORE initiation. To initiate the AutoStore disable sequence, the following sequence of CE or OE controlled read operations must be performed:

- 1. Read address 0x4E38 Valid READ
- Read address 0xB1C7 Valid READ
- Read address 0x83E0 Valid READ
- 4. Read address 0x7C1F Valid READ
- Read address 0x703F Valid READ
- 6. Read address 0x8B45 AutoStore Disable

AutoStore is re-enabled by initiating an AutoStore enable sequence. A sequence of read operations is performed in a manner similar to the software RECALL initiation. To initiate the AutoStore enable sequence, the following sequence of CE or OE controlled read operations must be performed:

- 1. Read address 0x4E38 Valid READ
- 2. Read address 0xB1C7 Valid READ
- 3. Read address 0x83E0 Valid READ
- Read address 0x7C1F Valid READ
- 5. Read address 0x703F Valid READ
- 6. Read address 0x4B46 AutoStore Enable

If the AutoStore function is disabled or re-enabled, a manual STORE operation (hardware or software) issued to save the AutoStore state through subsequent power down cycles. The part comes from the factory with AutoStore enabled.

Notes

7. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.

While there are 19 address lines on the CY14B104K (18 address lines on the CY14B104M), only 13 address lines (A₁₄ - A₂) are used to control software modes. The remaining address lines are don't care. 6.

Best Practices

nvSRAM products have been used effectively for over 15 years. While ease-of-use is one of the product's main system values, experience gained working with hundreds of applications has resulted in the following suggestions as best practices:

- The nonvolatile cells in this nvSRAM product are delivered from Cypress with 0x00 written in all cells. Incoming inspection routines at customer or contract manufacturer's sites sometimes reprogram these values. Final NV patterns are typically repeating patterns of AA, 55, 00, FF, A5, or 5A. End product's firmware should not assume an NV array is in a set programmed state. Routines that check memory content values to determine first time system configuration, cold or warm boot status, and so on should always program a unique NV pattern (that is, complex 4-byte pattern of 46 E6 49 53 hex or more random bytes) as part of the final system manufacturing test to ensure these system routines work consistently.
- Power up boot firmware routines should rewrite the nvSRAM into the desired state (for example, autostore enabled). While the nvSRAM is shipped in a preset state, best practice is to again rewrite the nvSRAM into the desired state as a safeguard against events that might flip the bit inadvertently such as program bugs and incoming inspection routines.
- The V_{CAP} value specified in this data sheet includes a minimum and a maximum value size. Best practice is to meet this requirement and not exceed the maximum V_{CAP} value because the nvSRAM internal algorithm calculates V_{CAP} charge and discharge time based on this maximum V_{CAP} value. Customers that want to use a larger V_{CAP} value to make sure there is extra store charge and store time should discuss their V_{CAP} size selection with Cypress to understand any impact on the V_{CAP} voltage level at the end of a t_{RECALL} period.

Data Protection

The CY14B104K/CY14B104M protects data from corruption during low voltage conditions by inhibiting all externally initiated STORE and write operations. The low voltage condition is detected when V_{CC} is less than V_{SWITCH} . If the CY14B104K/CY14B104M is in a write mode (both CE and WE are LOW) at power up, after a RECALL or STORE, the write is inhibited until the SRAM is enabled after t_{LZHSB} (HSB to output active). This protects against inadvertent writes during power up or brown out conditions.

Noise Considerations

Refer to CY application note AN1064.

Real Time Clock Operation

nvTIME Operation

The CY14B104K/CY14B104M offers internal registers that contain clock, alarm, watchdog, interrupt, and control functions. RTC registers use the last 16 address locations of the SRAM. Internal double buffering of the clock and timer information registers prevents accessing transitional internal clock data during a read or write operation. Double buffering also circumvents disrupting normal timing counts or the clock acturacy of the internal clock when accessing clock data. Clock and alarm registers store data in BCD format.

RTC functionality is described with respect to CY14B104K in the following sections. The same description applies to CY14B104M, except for the RTC register addresses. The RTC register addresses for CY14B104K range from 0x7FFF0 to 0x7FFFF, while those for CY14B104M range from 0x3FFF0 to 0x3FFFF. Refer to Table 4 on page 12 and Table 5 on page 13 for a detailed Register Map description.

Clock Operations

The clock registers maintain time up to 9,999 years in one second increments. The time can be set to any calendar time and the clock automatically keeps track of days of the week and month, leap years, and century transitions. There are eight registers dedicated to the clock functions, which are used to set time with a write cycle and to read time during a read cycle. These registers contain the time of day in BCD format. Bits defined as '0' are currently not used and are reserved for future use by Cypress.

Reading the Clock

The double buffered RTC register structure reduces the chance of reading incorrect data from the clock. The user must stop internal updates to the CY14B104K time keeping registers before reading clock data, to prevent reading of data in transition. Stopping the register updates does not affect clock accuracy.

The updating process is stopped by writing a '1' to the read bit 'R' (in the flags register at 0x7FFF0), and does not restart until a '0' is written to the read bit. The RTC registers are then read while the internal clock continues to run. After a '0' is written to the read bit ('R'), all RTC registers are simultaneously updated within 20 ms.

Setting the Clock

Setting the write bit 'W' (in the flags register at 0x7FFF0) to a '1' stops updates to the time keeping registers and enables the time to be set. The correct day, date, and time is then written into the registers and must be in 24 hour BCD format. The time written is referred to as the "Base Time". This value is stored in nonvolatile registers and used in the calculation of the current time. Resetting the write bit to '0' transfers the values of timekeeping registers to the actual clock counters, after which the clock resumes normal operation.

If the time written to the timekeeping registers is not in the correct BCD format, each invalid nibble of the RTC registers continue counting to 0xF before rolling over to 0x0 after which RTC resumes normal operation.

Note The values entered in the timekeeping, alarm, calibration, and interrupt registers need a STORE operation to be saved in nonvolatile memory. Therefore, while working in AutoStore disabled mode, the user must perform a STORE operation after writing into the RTC registers for the RTC to work correctly.

Backup Power

The RTC in the CY14B104K is intended for permanently powered operation. The V_{RTCcap} or V_{RTCbat} pin is connected depending on whether a capacitor or battery is chosen for the application. When the primary power, V_{CC} , fails and drops below V_{SWITCH} the device switches to the backup power supply.

The clock oscillator uses very little current, which maximizes the backup time available from the backup source. Regardless of the clock operation with the primary source removed, the data stored in the nvSRAM is secure, having been stored in the nonvolatile elements when power was lost.

During backup operation, the CY14B104K consumes 0.35 microamps (Typ) at room temperature. User must choose capacitor or battery values according to the application.

Backup time values based on maximum current specifications are shown in the following table. Nominal backup times are approximately two times longer.

Table 3. RTC Backup Time

Capacitor Value	Backup Time
0.1F	72 hours
0.47F	14 days
1.0F	30 days

Using a capacitor has the obvious advantage of recharging the backup source each time the system is powered up. If a battery is used, a 3V lithium is recommended and the CY14B104K sources current only from the battery when the primary power is removed. However the battery is not recharged at any time by the CY14B104K. The battery capacity must be chosen for total anticipated cumulative down time required over the life of the system.

Stopping and Starting the Oscillator

The OSCEN bit in the calibration register at 0x7FFF8 controls the enable and disable of the oscillator. This bit is nonvolatile and is shipped to customers in the "enabled" (set to 0) state. To preserve the battery life when the system is in storage, OSCEN

must be set to '1'. This turns off the oscillator circuit, extending the battery life. If the OSCEN bit goes from disabled to enabled, it takes approximately one second (two seconds maximum) for the oscillator to start.

While system power is off, If the voltage on the backup supply (V_{RTCcap} or V_{RTCbat}) falls below their respective minimum level, the oscillator may fail. The CY14B104K has the ability to detect oscillator failure when system power is restored. This is recorded in the OSCF (Oscillator Failed bit) of the flags register at the address 0x7FFF0. When the device is powered on (V_{CC} goes above V_{SWITCH}) the OSCEN bit is checked for "enabled" status. If the OSCEN bit is enabled and the oscillator is not active within the first 5 ms, the OSCF bit is set to "1". The system must check for this condition and then write '0' to clear the flag. Note that in addition to setting the OSCF flag bit, the time registers are reset to the "Base Time" (see Setting the Clock on page 8), which is the value last written to the timekeeping registers. The control or calibration registers and the OSCEN bit are not affected by the 'oscillator failed' condition.

The value of OSCF must be reset to '0' when the time registers are written for the first time. This initializes the state of this bit which may have become set when the system was first powered on.

To reset OSCF, set the write bit "W" (in the Flags register at 0x7FFF0) to a "1" to enable writes to the Flag register. Write a "0" to the OSCF bit and then reset the write bit to "0" to disable writes.

Calibrating the Clock

The RTC is driven by a quartz controlled crystal with a nominal frequency of 32.768 kHz. Clock accuracy depends on the quality of the crystal and calibration. The crystals available in market typically have an error of \pm 20 ppm to \pm 35 ppm. However, CY14B104K employs a calibration circuit that improves the accuracy to \pm 1/–2 ppm at 25°C. This implies an error of \pm 2.5 seconds to -5 seconds per month.

The calibration circuit adds or subtracts counts from the oscillator divider circuit to achieve this accuracy. The number of pulses that are suppressed (subtracted, negative calibration) or split (added, positive calibration) depends upon the value loaded into the five calibration bits found in Calibration register at 0x7FFF8. The calibration bits occupy the five lower order bits in the Calibration register. These bits are set to represent any value between '0' and 31 in binary form. Bit D5 is a sign bit, where a '1' indicates positive calibration and a '0' indicates negative calibration. Adding counts speeds the clock up and subtracting counts slows the clock down. If a binary '1' is loaded into the register, it corresponds to an adjustment of 4.068 or -2.034 ppm offset in oscillator error, depending on the sign.

Calibration occurs within a 64-minute cycle. The first 62 minutes in the cycle may, once every minute, have one second shortened by 128 or lengthened by 256 oscillator cycles. If a binary '1' is loaded into the register, only the first two minutes of the 64-minute cycle are modified. If a binary 6 is loaded, the first 12 are affected, and so on. Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every 125,829,120 actual oscillator cycles, that is, 4.068 or -2.034 ppm of adjustment per calibration step in the Calibration register.

To determine the required calibration, the CAL bit in the Flags register (0x7FF6) must be set to '1'. This causes the INT pin to

toggle at a nominal frequency of 512 Hz. Any deviation measured from the 512 Hz indicates the degree and direction of the required correction. For example, a reading of 512.01024 Hz indicates a +20 ppm error. Hence, a decimal value of -10 (001010b) must be loaded into the Calibration register to offset this error.

Note Setting or changing the Calibration register does not affect the test output frequency.

To set or clear CAL, set the write bit "W" (in the flags register at 0x7FFF0) to "1" to enable writes to the Flag register. Write a value to CAL, and then reset the write bit to "0" to disable writes.

Alarm

The alarm function compares user programmed values of alarm time and date (stored in the registers 0x7FFF1-5) with the corresponding time of day and date values. When a match occurs, the alarm internal flag (AF) is set and an interrupt is generated on INT pin if Alarm Interrupt Enable (AIE) bit is set.

There are four alarm match fields - date, hours, minutes, and seconds. Each of these fields has a match bit that is used to determine if the field is used in the alarm match logic. Setting the match bit to '0' indicates that the corresponding field is used in the match process. Depending on the match bits, the alarm occurs as specifically as once a month or as frequently as once every minute. Selecting none of the match bits (all 1s) indicates that no match bits (all 0s) causes an exact time and date match.

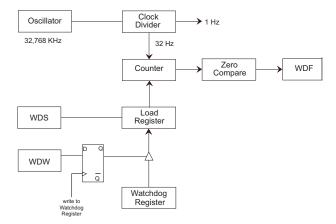
There are two ways to detect an alarm event: by reading the AF flag or monitoring the INT pin. The AF flag in the flags register at 0x7FFF0 indicates that a date or time match has occurred. The AF bit is set to "1" when a match occurs. Reading the flags register clears the alarm flag bit (and all others). A hardware interrupt pin may also be used to detect an alarm event.

To set, clear or enable an alarm, set the 'W' bit (in Flags Register - 0x7FFF0) to '1' to enable writes to Alarm Registers. After writing the alarm value, clear the 'W' bit back to "0" for the changes to take effect.

Note CY14B104K requires the alarm match bit for seconds (0x7FFF2 - D7) to be set to '0' for proper operation of Alarm Flag and Interrupt.

Watchdog Timer

The Watchdog Timer is a free running down counter that uses the 32 Hz clock (31.25 ms) derived from the crystal oscillator. The oscillator must be running for the watchdog to function. It begins counting down from the value loaded in the Watchdog Timer register.


The timer consists of a loadable register and a free running counter. On power up, the watchdog time out value in register 0x7FFF7 is loaded into the Counter Load register. Counting begins on power up and restarts from the loadable value any time the Watchdog Strobe (WDS) bit is set to '1'. The counter is compared to the terminal value of '0'. If the counter reaches this value, it causes an internal flag and an optional interrupt output. You can prevent the time out interrupt by setting WDS bit to '1' prior to the counter reaching '0'. This causes the counter to reload with the watchdog time out value and to be restarted. As long as the user sets the WDS bit prior to the counter reaching the terminal value, the interrupt and WDT flag never occur.

New time out values are written by setting the watchdog write bit to '0'. When the WDW is '0', new writes to the watchdog time out value bits D5-D0 are enabled to modify the time out value. When WDW is '1', writes to bits D5-D0 are ignored. The WDW function enables a user to set the WDS bit without concern that the watchdog timer value is modified. A logical diagram of the watchdog timer is shown in Figure 3. Note that setting the watchdog time out value to '0' disables the watchdog function.

The output of the watchdog timer is the flag bit WDF that is set if the watchdog is allowed to time out. If the Watchdog Interrupt Enable (WIE) bit in the Interrupt register is set, a hardware interrupt on INT pin is also generated on watchdog timeout. The flag and the hardware interrupt are both cleared when user reads the Flags registers.

Figure 3. Watchdog Timer Block Diagram

Power Monitor

The CY14B104K provides a power management scheme with power fail interrupt capability. It also controls the internal switch to backup power for the clock and protects the memory from low V_{CC} access. The power monitor is based on an internal band gap reference circuit that compares the V_{CC} voltage to V_{SWITCH} threshold.

As described in the section AutoStore Operation on page 4, when V_{SWITCH} is reached as V_{CC} decays from power loss, a data STORE operation is initiated from SRAM to the nonvolatile elements, securing the last SRAM data state. Power is also switched from V_{CC} to the backup supply (battery or capacitor) to operate the RTC oscillator.

When operating from the backup source, read and write operations to nvSRAM are inhibited and the clock functions are not available to the user. The clock continues to operate in the background. The updated clock data is available to the user $t_{HRECALL}$ delay after V_{CC} is restored to the device (see AutoStore/Power Up RECALL on page 22).

Interrupts

The CY14B104K has Flags register, Interrupt register, and Interrupt logic that can signal interrupt to the microcontroller. There are three potential sources for interrupt: watchdog timer, power monitor, and alarm timer. Each of these can be individually enabled to drive the INT pin by appropriate setting in the Interrupt register (0x7FFF6). In addition, each has an associated flag bit in the Flags register (0x7FFF0) that the host processor uses to determine the cause of the interrupt. The INT pin driver has two bits that specify its behavior when an interrupt occurs.

An Interrupt is raised only if both a flag is raised by one of the three sources and the respective interrupt enable bit in Interrupts register is enabled (set to '1'). After an interrupt source is active, two programmable bits, H/L and P/L, determine the behavior of the output pin driver on INT pin. These two bits are located in the Interrupt register and can be used to drive level or pulse mode output from the INT pin. In pulse mode, the pulse width is internally fixed at approximately 200 ms. This mode is intended to reset a host microcontroller. In the level mode, the pin goes to its active polarity until the Flags register is read by the user. This mode is used as an interrupt to a host microcontroller. The control bits are summarized in the following section.

Interrupts are only generated while working on normal power and are not triggered when system is running in backup power mode.

Note CY14B104K generates valid interrupts only after the Powerup Recall sequence is completed. All events on INT pin must be ignored for $t_{HRECALL}$ duration after powerup.

Interrupt Register

Watchdog Interrupt Enable - WIE. When set to '1', the watchdog timer drives the INT pin and an internal flag when a watchdog time out occurs. When WIE is set to '0', the watchdog timer only affects the WDF flag in Flags register.

Alarm Interrupt Enable - AIE. When set to '1', the alarm match drives the INT pin and an internal flag. When AIE is set to '0', the alarm match only affects the AF Flags register.

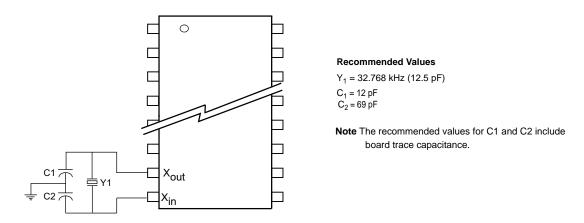
Power Fail Interrupt Enable - PFE. When set to '1', the power fail monitor drives the pin and an internal flag. When PFE is set to '0', the power fail monitor only affects the PF flag in Flags register.

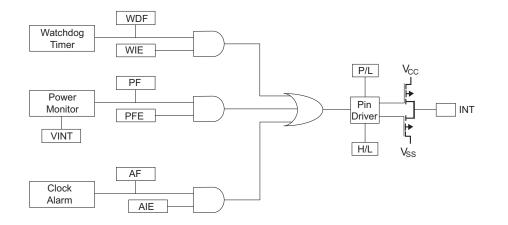
High/Low - H/L. When set to a '1', the INT pin is active HIGH and the driver mode is push pull. The INT pin drives high only when V_{CC} is greater than V_{SWITCH} . When set to a '0', the INT pin is active LOW and the drive mode is open drain. The INT pin must be pulled up to Vcc by a 10k resistor while using the interrupt in active LOW mode.

Pulse/Level - P/L. When set to a '1' and an interrupt occurs, the INT pin is driven for approximately 200 ms. When P/L is set to a '0', the INT pin is driven high or low (determined by H/L) until the Flags or Control register is read.

When an enabled interrupt source activates the INT pin, an external host reads the Flags registers to determine the cause. Remember that all flags are cleared when the register is read. If the INT pin is programmed for Level mode, then the condition clears and the INT pin returns to its inactive state. If the pin is programmed for Pulse mode, then reading the flag also clears the flag and the pin. The pulse does not complete its specified duration if the Flags register is read. If the INT pin is used as a host reset, the Flags register is not read during a reset.

Flags Register


The Flag register has three flag bits: WDF, AF, and PF, which can be used to generate an interrupt. They are set by the watchdog timeout, alarm match, or power fail monitor respectively. The processor can either poll this register or enable interrupts when a flag is set. These flags are automatically reset after the register is read. The flags register is automatically loaded



with the value 0x00 on power up (except for the OSCF bit. See Stopping and Starting the Oscillator on page 8).

Figure 4. RTC Recommended Component Configuration

WDF - Watchdog Timer Flag WIE - Watchdog Interrupt Enable PF - Power Fail Flag PFE - Power Fail Enable AF - Alarm Flag AIE - Alarm Interrupt Enable P/L - Pulse Level H/L - High/Low

Table 4. RTC Register Map^[8]

Reg	ister			BCI	D Format	Data ^[9]		Function/Dongo		
CY14B104K	CY14B104M	D7	D6	D5	D4	D3	D2	D1	D0	Function/Range
0x7FFFF	0x3FFFF		10s Y	'ears			Yea	rs		Years: 00–99
0x7FFFE	0x3FFFE	0	0	0	10s Months		Mon	ths		Months: 01–12
0x7FFFD	0x3FFFD	0	0	10s Day	of Month		Day Of	Month		Day of Month: 01–31
0x7FFFC	0x3FFFC	0	0	0	0	0	Da	y of Wee	k	Day of Week: 01–07
0x7FFFB	0x3FFFB	0	0	10s H	lours		Hou	irs		Hours: 00–23
0x7FFFA	0x3FFFA	0	1	0s Minutes			Minu	tes		Minutes: 00–59
0x7FFF9	0x3FFF9	0	1(os Seconde	6		Seco	nds		Seconds: 00–59
0x7FFF8	0x3FFF8	OSCEN (0)	0	Cal Sign (0)	Calibration (00000)					Calibration Values ^[10]
0x7FFF7	0x3FFF7	WDS (0)	WDW (0)			WDT (00	00000)			Watchdog ^[10]
0x7FFF6	0x3FFF6	WIE (0)	AIE (0)	PFE (0)	0	H/L (1)	P/L (0)	0	0	Interrupts ^[10]
0x7FFF5	0x3FFF5	M (1)	0	10s Alar	m Date		Alarm	Day		Alarm, Day of Month: 01–31
0x7FFF4	0x3FFF4	M (1)	0	10s Alarr	m Hours		Alarm H	Hours		Alarm, Hours: 00–23
0x7FFF3	0x3FFF3	M (1)	10 A	larm Minu	inutes Alarm Minutes			Alarm, Minutes: 00–59		
0x7FFF2	0x3FFF2	M (1)	10 A	larm Seco	onds Alarm, Seconds				Alarm, Seconds: 00–59	
0x7FFF1	0x3FFF1		10s Ce	nturies			Centu	iries		Centuries: 00–99
0x7FFF0	0x3FFF0	WDF	AF	PF	OSCF	0	CAL (0)	W (0)	R (0)	Flags ^[10]

Notes
8. Upper byte D₁₅-D₈ (CY14B104M) of RTC registers are reserved for future use.
9. () designates values shipped from the factory.
10. This is a binary value, not a BCD value.

Table 5. Register Map Detail

Reg	ister				D					
CY14B104K CY14B104M		- Description								
		Time Keeping - Years								
0x7FFFF	0x3FFFF	D7	D6	D5	D4	D3	D2	D1	D0	
	1		10s	Years			Ye	ears		
		upper nibb		contains the	f the year. Lov value for 10s					
					Time Keepir	ng - Months	;			
0x7FFFE	0x3FFFE	D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	0	10s Month		Mc	onths	•	
		from 0 to 9		ole (one bit) c	n. Lower nibbl ontains the u	pper digit ar				
0x7FFFD	0x3FFFD		0	1	Time Keep	ing - Date	1	1	r	
		D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	10s Day	of Month		Day o	f Month		
	1	and opera	tes from 0 to	9; upper nib	of the month ble (two bits) _eap years ar Time Keep	contains the e automatic	e 10s digit ai	nd operates		
0x7FFFC	0x3FFFC	D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	0	0	0		Day of Wee	-	
		ring count	er that count	s from 1 to 7	value that cor then returns rated with the	to 1. The us	ay of the we	ek. Day of th	ne week is	
0x7FFFB	0x3FFFB	Time Keeping - Hours								
UX/FFFB	UXSFFFB	D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	10s	Hours		Ho	ours		
		digit and o	perates from		24 hour form r nibble (two 0–23.					
0x7FFFA	0x3FFFA				Time Keepin	g - Minutes	3			
		D7	D6	D5	D4	D3	D2	D1	D0	
		0		10s Minutes	6		Mir	nutes		
		from 0 to 9		ole (three bits	Lower nibble) contains the					
0x7FFF9	0x3FFF9			-	Time Keepin	g - Second	S			
VX/ FFF9	UX3FFF9	D7	D6	D5	D4	D3	D2	D1	D0	
		0		10s Second	S		Sec	conds		
		from 0 to 9		le (three bits)	Lower nibble contains the					

Table 5. Register Map Detail (continued)

Register					Decer	intion				
CY14B104K	CY14B104M	- Description								
0x7FFF8	0x3FFF8	Calibration/Control								
0275550	UXJEFEO	D7	D6	D5	D4	D3	D2	D1	D0	
		OSCEN	0	Calibration Sign			Calibration			
OSC	CEN			en set to 1, the saves batter), the oscilla	tor runs.	
Calib Si		Determine the time-ba		ation adjustm	ent is applied	d as an addit	ion (1) to or a	as a subtrac	tion (0) froi	
Calib	ration	These five	bits control	the calibration	n of the clock	۲.				
0x7FFF7	0x3FFF7				WatchDo	og Timer				
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,01117	D7	D6	D5	D4	D3	D2	D1	D0	
		WDS	WDW			WE	DT			
WI	DS	0 has no e	ffect. The bi	ing this bit to t is cleared au Ilways returns	tomatically a					
WE	DW	(D5–D0). T Setting this	This allows the bit to 0 allo	e. Setting this ne user to set ows bits D5–D s function is ex	the watchdo 0 to be writte	g strobe bit v en to the wa	without distu tchdog regis	rbing the tin ster when th	neout value e next writ	
WI	T	Watchdog timeout selection. The watchdog timer interval is selected by the 6-bit value in this register. It represents a multiplier of the 32 Hz count (31.25 ms). The range of timeout value is 31.25 ms (a setting of 1) to 2 seconds (setting of 3 Fh). Setting the watchdog timer register to 0 disables the timer. These bits can be written only if the WDW bit was set to 0 on a previous cycle								
0	005550	Interrupt Status/Control								
0x7FFF6	0x3FFF6	D7	D6	D5	D4	D3	D2	D1	D0	
		WIE	AIE	PFE	0	H/L	P/L	0	0	
W	IE	Watchdog Interrupt Enable. When set to 1 and a watchdog timeout occurs, the watchdog timer drives the INT pin and the WDF flag. When set to 0, the watchdog timeout affects only the WDF flag.								
A	E	Alarm Interrupt Enable. When set to 1, the alarm match drives the INT pin and the AF flag. Whe set to 0, the alarm match only affects the AF flag.								
Pf	E	Power Fail Enable. When set to 1, the power fail monitor drives the INT pin and the PF flag. When set to 0, the power fail monitor affects only the PF flag.								
()	Reserved	for future us	е						
H	/L	High/Low. When set to 1, the INT pin is driven active HIGH. When set to 0, the INT pin is open drain, active LOW.								
P.	/L	for approx	el. When set mately 200 ags register	to 1, the INT p ms. When set is read.	to 0, the IN	active (deterr T pin is drive	mined by H/I en to an acti	_) by an inte ve level (as	rrupt sourc set by H/L	
0x7FFF5	0x3FFF5				Alarm	- Day				
		D7	D6	D5	D4	D3	D2	D1	D0	
		М	0	10s Alai	m Date		Alarn	n Date		
		Contains the value.	ne alarm val	ue for the date	e of the mont	h and the m	ask bit to sel	lect or desel	ect the dat	
Ν	Λ			s set to 0, the uit to ignore th			alarm matc	h. Setting th	nis bit to 1	

Table 5. Register Map Detail (continued)

Register		Description									
CY14B104K	CY14B104M										
0x7FFF4	0x3FFF4		Alarm - Hours								
		D7	D6	D5	D4	D3	D2	D1	D0		
		M	0		rm Hours			n Hours			
	-				urs and the m						
ľ	N				hours value i he hours valu		e alarm mai	tch. Setting	this bit to 1		
				J	Alarm - I						
0x7FFF3	0x3FFF3	D7	D6	D5	D4	D3	D2	D1	D0		
		М	10	s Alarm Minu	utes		Alarm	Minutes			
		Contains t	he alarm val	ue for the mir	utes and the	mask bit to s	select or des	select the m	inutes valu		
١	N				minutes value		he alarm ma	atch. Setting	g this bit to		
	I	causes the	e match circu	uit to ignore t	he minutes va						
0x7FFF2	0x3FFF2				Alarm - S						
		D7	D6	D5	D4	D3	D2	D1	D0		
		M		s Alarm Seco				Seconds			
					onds and the						
ſ	M				seconds value the seconds		the alarm r	natch. Setti	ng this bit t		
		1 causes the match circuit to ignore the seconds value. Time Keeping - Centuries									
0x7FFF1	0x3FFF1	D7	D6	D5	D4	D3	D2	D1	D0		
			10s C	enturies		_	Cen	Inturies	_		
		Contains t to 9; upper 0-99 centu	r nibble cont	e of centurie ains the uppe	s. Lower nibb er digit and op	le contains perates from	the lower di 0 to 9. The	git and oper range for th	rates from le register i		
0x7FFF0	0x3FFF0	Flags									
VX/FFFV	UX3FFFU	D7	D6	D5	D4	D3	D2	D1	D0		
		WDF	AF	PF	OSCF	0	CAL	W	R		
W	DF				ly bit is set to						
	F		e	,	is cleared to (8				
P	\F				to 1 when the 0. It is cleare						
F	PF	alarm registers with the match bits = 0. It is cleared when the Flags register is read or on power up Power Fail Flag. This read only bit is set to 1 when power falls below the power fail threshold V_{SWITCH} . It is cleared to 0 when the Flags register is read or on power up.									
OS	SCF	Oscillator Fail Flag. Set to 1 on power up if the oscillator is enabled and not running in the first 5									
		ms of operation. This indicates that RTC backup power failed and clock value is no longer valid. This bit survives power cycle and is never cleared internally by the chip. The user must check for this condition and write '0' to clear this flag.									
CAL		Calibration Mode. When set to 1, a 512 Hz square wave is output on the INT pin. When set to 0, the INT pin resumes normal operation. This bit defaults to 0 (disabled) on power up.									
W		Write Enable: Setting the W bit to 1 freezes updates of the RTC registers. The user can then write to RTC registers, Alarm registers, Calibration register, Interrupt register and Flags register. Setting the W bit to 0 causes the contents of the RTC registers to be transferred to the time keeping counters if the time has changed (a new base time is loaded). This bit defaults to 0 on power up.									
I	R	are not se	en during the	e reading pro	ps clock upda cess. Set R b quire W bit to	oit to 0 to res	sume clock i	updates to t	he holding		

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature65°C to +150°C
Maximum Accumulated Storage Time
At 150°C Ambient Temperature 1000h
At 85°C Ambient Temperature 20 Years
Ambient Temperature with Power Applied55°C to +150°C
Supply Voltage on V _{CC} Relative to GND–0.5V to 4.1V
Voltage Applied to Outputs in High Z State0.5V to V _{CC} + 0.5V Input Voltage0.5V to V _{CC} + 0.5V

Transient Voltage (<20 ns) on Any Pin to Ground Potential–2.0V to V_{CC} + 2.0V
Package Power Dissipation Capability ($T_A = 25^{\circ}C$)
Surface Mount Pb Soldering Temperature (3 Seconds)+260°C
DC Output Current (1 output at a time, 1s duration)15 mA
Static Discharge Voltage > 2001V (per MIL-STD-883, Method 3015)
Latch Up Current > 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	2.7V to 3.6V

DC Electrical Characteristics

Over the Operating Range ($V_{CC} = 2.7V$ to 3.6V)

Parameter	Description	Test Conditions	Min	Typ ^[11]	Max	Unit
V _{CC}	Power Supply		2.7	3.0	3.6	V
I _{CC1}	Average V _{CC} Current	t _{RC} = 25 ns t _{RC} = 45 ns Values obtained without output loads (I _{OUT} = 0 mA)			70 52	mA mA
I _{CC2}	Average V _{CC} Current during STORE	All Inputs Don't Care, V _{CC} = Max. Average current for duration t _{STORE}			10	mA
I _{CC3}	Average V_{CC} Current at t_{RC} = 200 ns, V_{CC} (Typ), 25°C	All I/P cycling at CMOS levels. Values obtained without output loads (I _{OUT} = 0 mA).		35		mA
I _{CC4}	Average V _{CAP} Current during AutoStore Cycle	All Inputs Don't Care. Average current for duration t _{STORE}			5	mA
I _{SB}	V _{CC} Standby Current	$\begin{array}{l} CE \geq (V_{CC} - 0.2V). \ V_{IN} \leq 0.2V \ or \geq (V_{CC} - 0.2V). \\ W \ bit \ set \ to \ '0'. \ Standby \ current \ level \ after \ nonvolatile \\ cycle \ is \ complete. \ Inputs \ are \ static. \ f = 0 \ MHz. \end{array}$			5	mA
I _{IX} ^[12]	Input Leakage Current (except HSB)	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$	-1		+1	μA
	Inpu <u>t Lea</u> kage Current (for HSB)	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$	-100		+1	μA
I _{OZ}	Off State Output Leakage Current	$\frac{V_{CC}}{BHE/BLE} \ge V_{IH} \text{ or } WE \le V_{IL}$	-1		+1	μA
V _{IH}	Input HIGH Voltage		2.0		V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage		$V_{SS} - 0.5$		0.8	V
V _{OH}	Output HIGH Voltage	$I_{OUT} = -2 \text{ mA}$	2.4			V
V _{OL}	Output LOW Voltage	I _{OUT} = 4 mA			0.4	V
V _{CAP}	Storage Capacitor	Between V_{CAP} pin and V_{SS} , 5V rated	61	68	180	μF

Notes

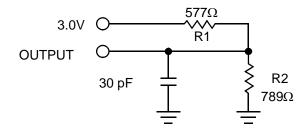
11. Typical values are at 25°C, V_{CC} = V_{CC} (Typ). Not 100% tested. 12. The HSB pin has I_{OUT} = -2 uA for V_{OH} of 2.4V when both active HIGH and LOW drivers are disabled. When they are enabled standard V_{OH} and V_{OL} are valid. This parameter is characterized but not tested.

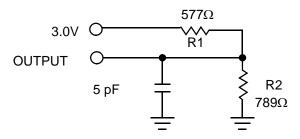
Data Retention and Endurance

Parameter	Description	Min	Unit
DATA _R	Data Retention	20	Years
NV _C	Nonvolatile STORE Operations	1,000	K

Capacitance

In the following table, the capacitance parameters are listed. ^[13]


Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC}$ (Typ)	7	pF


Thermal Resistance

In the following table, the thermal resistance parameters are listed.^[13]

Parameter	Description	Test Conditions	44 TSOP II	54 TSOP II	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and procedures for	31.11	30.73	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)	measuring thermal impedance, in accordance with EIA/JESD51.	5.56	6.08	°C/W

Figure 6. AC Test Loads

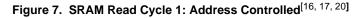
AC Test Conditions

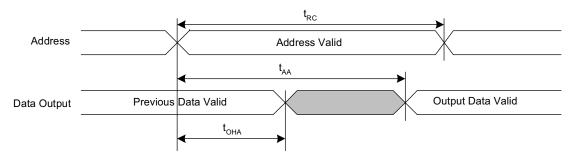
Input Pulse Levels0V to	5 3V
Input Rise and Fall Times (10% - 90%)	3 ns
Input and Output Timing Reference Levels	1.5V

RTC Characteristics

Parameters	Description		Min	Typ ^[11]	Max	Units
V _{RTCbat}	RTC Battery Pin Voltage		1.8	3.0	3.6	V
I _{BAK} ^[14]	RTC Backup Current	T _A (Min)			0.35	μΑ
		25°C		0.35		μΑ
		T _A (Max)			0.5	μΑ
V _{RTCcap} ^[15]	RTC Capacitor Pin Voltage	T _A (Min)	1.6		3.6	V
		25°C	1.5	3.0	3.6	V
		T _A (Max)	1.4		3.6	V
tOCS	RTC Oscillator Time to Start			1	2	sec
R _{BKCHG}	RTC Backup Capacitor Charge Current-Limiting Resistor		350		850	Ω

Notes


 From either V_{RTCcap} or V_{RTCbat}.
 If V_{RTCcap} > 0.5V or if no capacitor is connected to V_{RTCcap} pin, the oscillator starts in tOCS time. If a backup capacitor is connected and V_{RTCcap} < 0.5V, the capacitor must be allowed to charge to 0.5V for oscillator to start.



AC Switching Characteristics

Parar	neters		25	ns	45	ns	
Cypress Parameters	Alt Parameters	Description	Min	Max	Min	Max	Unit
SRAM Read Cycl	e			•	•	•	•
t _{ACE}	t _{ACS}	Chip Enable Access Time		25		45	ns
t _{RC} ^[16]	t _{RC}	Read Cycle Time	25		45		ns
t _{AA} ^[17]	t _{AA}	Address Access Time		25		45	ns
t _{DOE}	t _{OE}	Output Enable to Data Valid		12		20	ns
t _{OHA} [17]	t _{OH}	Output Hold After Address Change	3		3		ns
t _{LZCE} ^[13, 18]	t _{LZ}	Chip Enable to Output Active	3		3		ns
t _{HZCE} [13, 18]	t _{HZ}	Chip Disable to Output Inactive		10		15	ns
t _{I ZOF} ^[13, 18]	t _{OLZ}	Output Enable to Output Active	0		0		ns
t _{HZOE} [13, 18]	t _{OHZ}	Output Disable to Output Inactive		10		15	ns
t _{PU} [13]	t _{PA}	Chip Enable to Power Active	0		0		ns
t _{PD} ^[13]	t _{PS}	Chip Disable to Power Standby		25		45	ns
t _{DBE}	-	Byte Enable to Data Valid		12		20	ns
t _{LZBE} ^[13]	-	Byte Enable to Output Active	0		0		ns
t _{HZBE} ^[13]	-	Byte Disable to Output Inactive		10		15	ns
SRAM Write Cycl	le		•	•		•	
t _{WC}	t _{WC}	Write Cycle Time	25		45		ns
t _{PWE}	t _{WP}	Write Pulse Width	20		30		ns
t _{SCE}	t _{CW}	Chip Enable To End of Write	20		30		ns
t _{SD}	t _{DW}	Data Setup to End of Write	10		15		ns
t _{HD}	t _{DH}	Data Hold After End of Write	0		0		ns
t _{AW}	t _{AW}	Address Setup to End of Write	20		30		ns
t _{SA}	t _{AS}	Address Setup to Start of Write	0		0		ns
t _{HA}	t _{WR}	Address Hold After End of Write	0	Ī	0	Ī	ns
t _{HZWE} ^[13, 18,19]	t _{WZ}	Write Enable to Output Disable		10		15	ns
t _{LZWE} [13, 18]	t _{OW}	Output Active after End of Write	3	Ī	3	Ī	ns
t _{BW}	-	Byte Enable to End of Write	20		30		ns

Switching Waveforms

 Notes

 16. WE must be HIGH during SRAM read cycles.


 17. Device is continuously selected with CE, OE and BHE / BLE LOW.

 18. Measured ±200 mV from steady state output voltage.

 19. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.

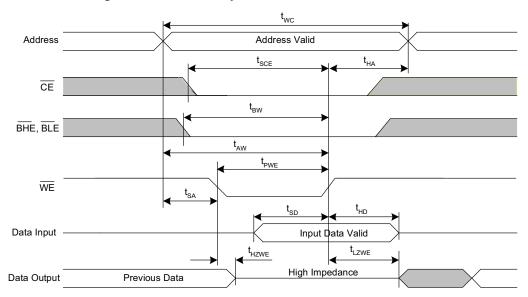
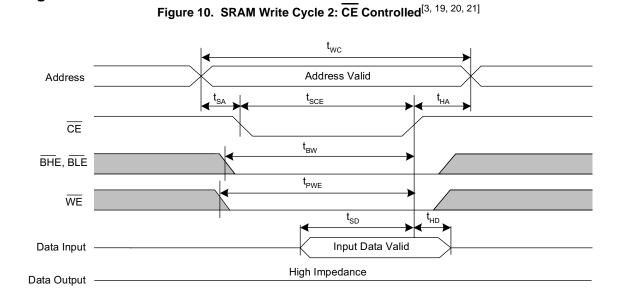
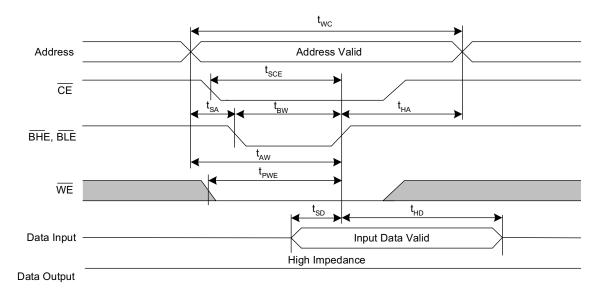

 20. HSB must remain HIGH during read and write cycles.

Figure 8. SRAM Read Cycle 2: \overline{CE} and \overline{OE} Controlled^[3, 16, 20]



Note 21. \overrightarrow{CE} or \overrightarrow{WE} must be $\geq V_{IH}$ during address transitions.

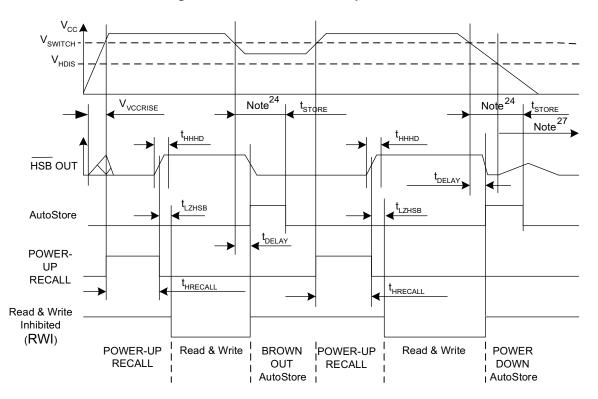


Switching Waveforms

Figure 11. SRAM Write Cycle 3: BHE and BLE Controlled^[6, 19, 20, 21, 22] (Not applicable for RTC register writes)

Note

22. Only CE and WE controlled writes to RTC registers are allowed. BLE pin must be held LOW before CE or WE pin goes LOW for writes to RTC register.



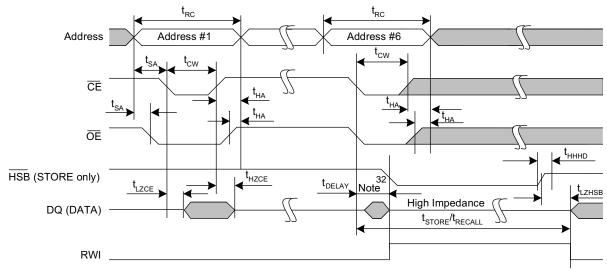
AutoStore/Power Up RECALL

Parameters	Description	CY14B104K/	CY14B104K/CY14B104M		
	Description	Min	Max	Unit	
t _{HRECALL} ^[23]	Power Up RECALL Duration		20	ms	
t _{STORE} ^[24]	STORE Cycle Duration		8	ms	
t _{DELAY} ^[25]	Time Allowed to Complete SRAM Write Cycle		25	ns	
V _{SWITCH}	Low Voltage Trigger Level		2.65	V	
t _{VCCRISE} ^[13]	V _{CC} Rise Time	150		μS	
V _{HDIS} ^[13]	HSB Output Disable Voltage		1.9	V	
t _{LZHSB} ^[13]	HSB To Output Active Time		5	μS	
t _{HHHD} ^[13]	HSB High Active Time		500	ns	

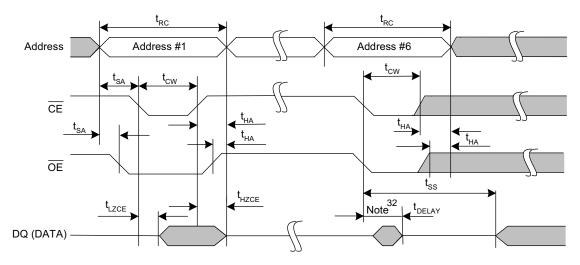
Switching Waveforms

Notes

- t_{HRECALL} starts from the time V_{CC} rises above V_{SWITCH}.
 If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.
- 25. On a Hardware Store and AutoStore initiation, SRAM write operation continues to be enabled for time t_{DELAY}.
- 26. Read and write cycles are ignored during STORE, RECALL, and while V_{CC} is below V_{SWITCH} .
- 27. HSB pin is driven HIGH to V_{CC} only by internal 100 kΩ resistor, HSB driver is disabled.


Software Controlled STORE and RECALL Cycle

In the following table, the software controlled STORE and RECALL cycle parameters are listed. [28, 29]


Parameters	Description	25	25 ns		45 ns	
r al allieter 5		Min	Max	Min	Max	Unit
t _{RC}	STORE/RECALL Initiation Cycle Time	25		45		ns
t _{SA}	Address Setup Time	0		0		ns
t _{CW}	Clock Pulse Width	20		30		ns
t _{HA}	Address Hold Time	0		0		ns
t _{RECALL}	RECALL Duration		200		200	μS
t _{SS} ^[30, 31]	Soft Sequence Processing Time		100		100	μS

Switching Waveforms

Figure 14. Autostore Enable and Disable Cycle

Notes

28. The software sequence is clocked with \overline{CE} controlled or \overline{OE} controlled reads. 29. The six consecutive addresses must be read in the order listed in Table 1. WE must be HIGH during all six consecutive cycles.

30. This is the amount of time it takes to take action on a soft sequence command. V_{CC} power must remain HIGH to effectively register command.

31. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.

32. DQ output data at the sixth read may be invalid since the output is disabled at t_{DELAY} time.

Hardware STORE Cycle

Parameters	Description	CY14B104K	Unit	
Farameters	Description	Min	Мах	Unit
t _{DHSB}	HSB To Output Active Time when write latch not set		25	ns
t _{PHSB}	Hardware STORE Pulse Width	15		ns

Switching Waveforms

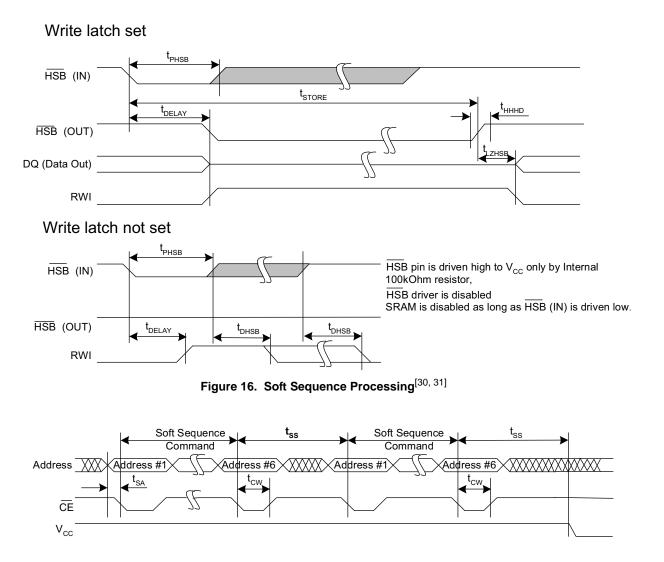


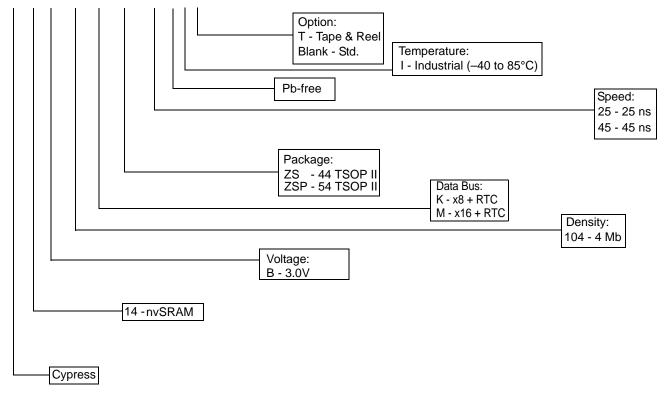
Figure 15. Hardware STORE Cycle^[24]

Truth Table For SRAM Operations

HSB should remain HIGH for SRAM Operations.

For x8 Configuration

CE	WE	OE	Inputs and Outputs ^[2]	Mode	Power
Н	Х	Х	High Z	Deselect/Power Down	Standby
L	Н	L	Data Out (DQ ₀ –DQ ₇)	Read	Active
L	Н	Н	High Z	Output Disabled	Active
L	L	Х	Data in (DQ ₀ –DQ ₇)	Write	Active

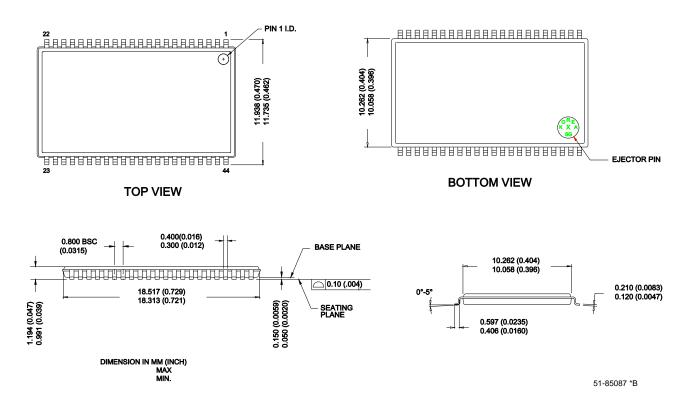

For x16 Configuration

CE	WE	OE	BHE ^[3]	BLE ^[3]	Inputs and Outputs ^[2]	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power Down	Standby
L	Х	Х	Н	Н	High Z	Output Disabled	Active
L	Н	L	L	L	Data Out (DQ ₀ –DQ ₁₅)	Read	Active
L	н	L	н	L	Data Out (DQ ₀ –DQ ₇); DQ ₈ –DQ ₁₅ in High Z	Read	Active
L	Н	L	L	Н	Data Out (DQ ₈ –DQ ₁₅); DQ ₀ –DQ ₇ in High Z	Read	Active
L	Н	Н	L	L	High Z	Output Disabled	Active
L	Н	Н	Н	L	High Z	Output Disabled	Active
L	Н	Н	L	Н	High Z	Output Disabled	Active
L	L	Х	L	L	Data In (DQ ₀ –DQ ₁₅)	Write	Active
L	L	Х	н	L	Data In (DQ ₀ –DQ ₇); DQ ₈ –DQ ₁₅ in High Z	Write	Active
L	L	Х	L	Н	Data In (DQ ₈ –DQ ₁₅); DQ ₀ –DQ ₇ in High Z	Write	Active

Part Numbering Nomenclature

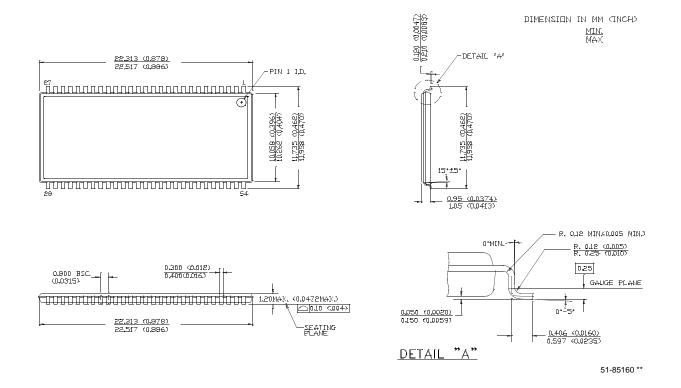
CY14 B 104 K ZSP 25 X I T

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
25	CY14B104K-ZS25XIT	51-85087	44-pin TSOPII	Industrial
	CY14B104K-ZS25XI	51-85187	44-pin TSOPII	
	CY14B104M-ZSP25XIT	51-85160	54-pin TSOPII	
	CY14B104M-ZSP25XI	51-85160	54-pin TSOPII	
45	CY14B104K-ZS45XIT	51-85087	44-pin TSOPII	
	CY14B104K-ZS45XI	51-85187	44-pin TSOPII	
	CY14B104M-ZSP45XIT	51-85160	54-pin TSOPII	
	CY14B104M-ZSP45XI	51-85160	54-pin TSOPII	

All the above parts are Pb-free.

Package Diagrams



Package Diagrams (continued)

Figure 18. 54-Pin TSOP II (51-85160)

Document History Page

	Document Title: CY14B104K, CY14B104M 4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock Document Number: 001-07103				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
**	431039	TUP	See ECN	New Data Sheet	
*A	489096	TUP	See ECN	Removed 48 SSOP Package Added 44 TSOPII and 54 TSOPII Packages Updated Part Numbering Nomenclature and Ordering Information Added Soft Sequence Processing Time Waveform Added RTC Characteristics Table Added RTC Recommended Component Configuration	
*В	499597	PCI	See ECN	Removed 35ns speed bin Added 55ns speed bin. Updated AC table for the same Changed "Unlimited" read/write to "infinite" read/write Features section: Changed typical I_{CC} at 200-ns cycle time to 8 mA Changed STORE cycles from 500K to 200K cycles. Shaded Commercial grade in operating range table. Modified Icc/Isb specs. Changed V _{CAP} value in DC table Added 44 TSOP II in Thermal Resistance table Modified part nomenclature table. Changes reflected in the ordering information table.	
O*	517793	TUP	See ECN	Removed 55ns speed bin Changed pinout for 44TSOPII and 54TSOPII packages Changed I _{SB} to 1mA Changed I _{CC4} to 3mA Changed V _{CAP} min to 35μ F Changed V _{IH} max to V _{CC} + 0.5V Changed t _{STORE} to 15ns Changed t _{SCE} to 15ns Changed t _{SCE} to 15ns Changed t _{SD} to 5ns Changed t _{AW} to 10ns Removed t _{HLBL} Added Timing Parameters for BHE and BLE - t _{DBE} , t _{LZBE} , t _{HZBE} , t _{BW} Removed min. specification for Vswitch Changed t _{GLAX} to 1ns Added t _{DELAY} max. of 70us Changed t _{SS} specification from 70us min. to 70us max.	
*D	825240	UHA	See ECN	Changed the data sheet from Advance information to Preliminary Changed t_{DBE} to 10ns in 15ns part Changed t_{HZBE} in 15ns part to 7ns and in 25ns part to10ns Changed t_{BW} in 15ns part to 15ns and in 25ns part to 20ns Changed t_{GLAX} to t_{GHAX} Changed the value of I_{CC3} to 25mA Changed the value of t_{AW} in 15ns part to 15ns	
*E	914280	UHA	See ECN	Changed the figure-14 title from 54-Pb to 54 Pin Included all the information for 45ns part in this data sheet	

Document History Page (continued)

Document Title: CY14B104K, CY14B104M 4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock Document Number: 001-07103 Submission Orig. of Rev. ECN No. **Description of Change** Change Date vsutmp8/AE-*F See ECN 1890926 Added Footnote 1, 2 and 3. Updated Logic Block diagram SA Updated Pin definition Table Changed 8Mb Address expansion Pin from Pin 43 to Pin 42 for 44-TSOP II (x8) package. Corrected typo in VIL min spec Changed the value of I_{CC3} from 25mA to 13mA Changed I_{SB} value from 1mA to 2mA Updated ordering information table Rearranging of Footnotes. Changed Package diagrams title. The pins X1 and X2 interchanged in 44TSOP II(x8) and 54TSOP II(x16) pinout diagram. *G 2267286 GVCH/PYRS See ECN Rearranging of "Features" Added BHE and BLE Information in Pin Definitions Table Updated Figure 2 (Autostore mode) Updated footnote 6 RTC Register Map:Register 0x1FFF6:Changed D4 from ABE to 0 Register Map Detail:0x1FFF6:Changed D4 from ABE to 0 and removed ABE information Changed I_{CC2} & I_{CC4} from 3mA to 6mA Changed I_{CC3} from 13mA to 15mA Changed ISB from 2mA to 3mA Added input leakage current (IIX) for HSB in DC Electrical Characteristics table Changed Vcap from 35uF min and 57uF max value to 54uF min and 82uF max value Corrected typo in t_{DBE} value from 22ns to 20ns for 45ns part Corrected typo in t_{HZBF} value from 22ns to 15ns for 45ns part Corrected typo in t_{AW} value from 15ns to 10ns for 15ns part Changed Vrtccap max from 2.7V to 3.6V Changed tRECALL from 100 to 200us Added footnote 10, 29 Reframed footnote 18, 25 Added footnote 18 to figure 8 (SRAM WRITE Cycle #1) Added footnote 18, 26 and 27 to figure 9 (SRAM WRITE Cycle #2) 2483627 GVCH/PYRS *H See ECN Removed 8 mA typical I_{CC} at 200 ns cycle time in Feature section Referenced footnote 9 to I_{CC3} in DC Characteristics table Changed I_{CC3} from 15 mA to 35 mA Changed Vcap minimum value from 54 uF to 61 uF Changed t_{AVAV} to t_{RC} Changed V_{RTCcap} minimum value from 1.2V to 1.5V Figure 12:Changed t_{SA} to t_{AS} and $t_{SCE to} t_{CW}$ *| 2519319 GVCH/PYRS 06/20/08 Added 20 ns access speed in "Features' Added I_{CC1} for tRC=20 ns for both industrial and Commercial temperature Grade Updated Thermal resistance values for 44-TSOP II and 54-TSOP II packages Added AC Switching Characteristics specs for 20 ns access speed Added Software controlled STORE/RECALL cycle specs for 20 ns access speed Updated ordering information and Part numbering nomenclature

Document History Page (continued)

	Document Title: CY14B104K, CY14B104M 4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock Document Number: 001-07103				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
*J	2600941	GVCH/PYRS	11/04/08	Removed 15 ns access speed from "Features" Changed part number from CY14B104K/CY14B104M to CY14B104KA/CY14B104MA Updated Logic block diagram Updated footnote 1 Added footnote 2 Pin definition: Updated WE, HSB and NC pin description Page 4: Updated RAM READ, SRAM WRITE, Autostore operation descriptio Page 4: Updated Hardware store operation and Hardware RECALL (Power up description Footnote 1 and 8 referenced for Mode selection Table Updated footnote 6 Page 6: updated Data protection description Page 7: Updated Calibrating and stopping the oscillator description Page 7: Updated Calibrating the clock description Page 8: Updated Calibrating the clock description Page 8: Added Flags register Added footnote 10 and 11 Updated Register Map Table 3 Updated Register Map Table 3 Updated Register map detail Table 4 Maximum Ratings: Added Max. Accumulated storage time Changed Ucc ₂ from 6mA to 5mA Changed I _{CC2} from 6mA to 5mA Changed I _{CC2} from 6mA to 5mA Changed I _{CC3} from 6mA to 5mA Changed I _{CC4} from 6mA to 5mA Changed I _{CC5} value for minimum temperature from 10 to 2 sec updated footnote 12 and 13 Added footnote 12 Added footnote 20 Added Figure 11 (SRAM WRITE CYCLE:BHE and BLE controlled) Updated footnote 20 Added Figure 11 (SRAM WRITE CYCLE:BHE and BLE controlled) Updated footnote 29 Software controlled STORE/RECALL Table: Changed t _{AS} to t _{SA} Changed t _{HLX} to t _{PA} betters Added tootnote 29 Software controlled STORE/RECALL Table: Changed t _{AS} to t _{SA} Changed t _{HLX} to t _{PA} betters Updated footnote 20 Software controlled STORE/RECALL Table: Changed t _{AS} to t _{SA} Changed t _{HLX} to t _{PA} betters Updated toetring information and part numbering nomencl	

Document History Page (continued)

		ber: 001-07103	1 14D 104W 4 W	Ibit (512K x 8/256K x 16) nvSRAM with Real Time Clock
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*К	2653928	GVCH/PYRS	02/04/09	Changed Part number from CY14B104KA/CY14B104MA to CY14B104K/CY14B104M Updated Real Time Clock operation description Added factory default values to register map table 3 Added footnote 9 Updated Flag register description in Table 4 Updated C1, C2 values to 21pF, 21pF respectively Changed I _{BAK} value from 350 nA to 450 nA at hot temperature Changed V _{RTCcap} typical value from 2.4V to 3.0V Referenced Note 15 to parameters t_{LZCE} , t_{HZCE} , t_{LZOE} , t_{LZBE} , t_{LZWE} , t_{HZWE} , and t_{HZBE} Added footnote 22 Updated Figure 13
*L	2710240	GVCH/PYRS	05/22/09	Moved data sheet status from Preliminary to Final Changed pin names X_1 , X_2 to X_{out} , X_{in} respectively. Updated AutoStore operation Updated C1, C2 values to 12pF, 69pF from 21pF, 21pF respectively Updated I _{SB} test condition Updated footnote 11 Updated I _{BAK} and V _{RTCcap} parameter values Added R _{BKCHG} parameter to RTC characteristics table Added footnote 15 Referenced footnote 13 to V _{CCRISE} , t _{HHHD} and t _{LZHSB} parameters Updated V _{HDIS} parameter description
*M	2738586	GVCH	07/15/09	Page 4: Updated Hardware STORE (HSB) operation description page 4: Updated Software STORE description Added best practices Updated t _{DELAY} parameter description Updated footnote 25 and added footnote 32 Referenced footnote 32 to Figure 13 and Figure 14
*N	2758397	GVCH/AESA	09/01/09	Removed commercial temperature related specifications Removed 20 ns access speed related specs Changed V _{RTCbat} max value from 3.3V to 3.6V Changed R _{BKCHG} min value from 450 Ω to 350 Ω Updated footnote 15
*0	2826364	GVCH/PYRS	12/11/09	Changed STORE cycles to QuantumTrap from 200K to 1 Million Updated I_{BAK} RTC backup current spec unit from nA to μA

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC	psoc.cypress.com
Clocks & Buffers	clocks.cypress.com
Wireless	wireless.cypress.com
Memories	memory.cypress.com
Image Sensors	image.cypress.com
USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2006-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-07103 Rev. *O

Revised December 08, 2009

Page 33 of 33

All products and company names mentioned in this document are the trademarks of their respective holders.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331