

Applications:

Frequency synthesizers

Programmable down counters

Programmable frequency dividers

Phase-locked loops

CD4522B programmable BCD counter has a decoded "0" state output for divide-by-N applications. In single stage operation the "0" output is tied to the Preset Enable input. The Cascade Feedback allows multiple stage divide-by-N operation without the need for external gating. A HIGH on the Clock Inhibit disables the pulse-counting function. A HIGH on the Master Reset asynchronously resets the divide-by-N operation. The output is presented in BCD format.

The CD4522B-series types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD) Voltages referenced to VSS Terminal)-0.5V to +20V POWER DISSIPATION PER PACKAGE (PD): DEVICE DISSIPATION PER OUTPUT TRANSISTOR STORAGE TEMPERATURE RANGE (Tstg)-65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING):

3

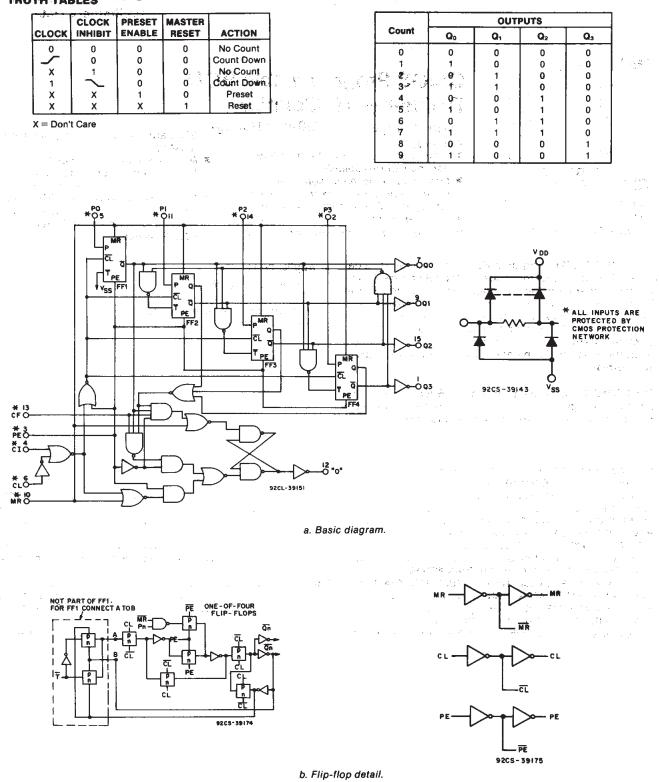
•

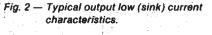
مېرې محمد مېرو

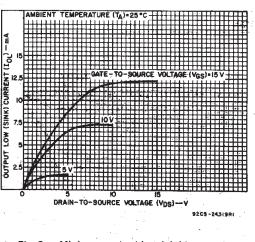
Ś

.

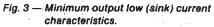
يلي م



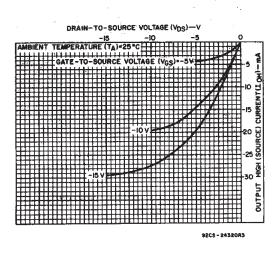

Fig. 1 - Logic diagram for the CD4522B.

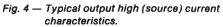

RECOMMENDED OPERATING CONDITIONS at T_A = 25^{\circ}C, except as noted.

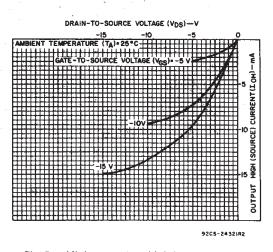
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

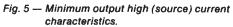

CHARACTERISTICS	Vpp	LIN	UNITS	
	(V)	Min.	Max.]
Supply-Voltage Range (For T _A = Full Package- Temperature Range		3	18	v
Pulse Width: Clock, tw(cc)	5 10 15	250 100 80		ns
Preset Enable, tw(cc)	5 10 15	250 100 80	-	ns
Master Reset, tw(MR)	5 10 15	350 250 200	-	пs
Clock Frequency, fcL	5 10 15		1.5 3.0 4.0	MHz
Clock Rise and Fall Time troug trou	5 10 15		15 15 15	μs
Preset Enable Set-up Time, t _{su}	5 10 15	0 0 0		ns
Preset Enable Hold Time, t _h	5 10 15	75 25 20		ns
Master Reset Removal Time, t _{rem}	5 10 15	130 50 30	-	ns

- 1 - ₁,

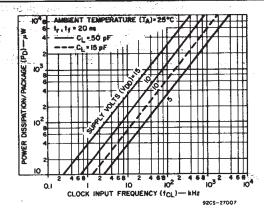


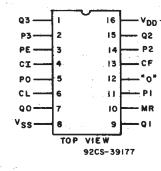

1.1


CD4522B Types

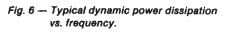

STATIC ELECTRICAL CHARACTERISTICS

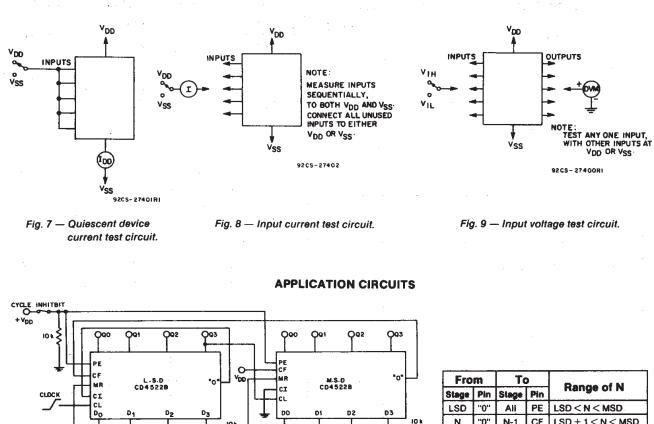
CHARACTER-	co	NDITION	IS	LIMITS AT INDICATED TEMPERATURES (°C)							
	v.	Vin						1			
	(V)	(V)	V _{DD} (V)	-55	-40	+85	+125	Min.	, Typ.	Max.	
Quiescent Device	_	0, 5	5	5	5	150	150		0.04	5	
Current, I _{DD} Max.	<u> </u>	0, 10	10	10	10	300	300		0.04	10	
	_	0, 15	15	20	20	600	600		0.04	20	μA
	—	0, 20	20	100	100	3000	3000		0.08	100	
Output Low	0.4	0, 5	5	0.64	0.61	0.42	0.36	0.51	1		
(Sink) Current	0.5	0, 10	10	1.6	1.5	1.1	0.9	1.3	2.6	_	
lo⊾ Min.	1.5	0, 15	15	4.2	4	2.8	2.4	3.4	6.8	·	
Output High	4.6	0, 5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		mA
(Source)	2.5	0, 5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		
Current,	9.5	0, 10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6		
loн Min.	13.5	0, 15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	—	
Output Voltage:	—	0, 5	5		0.	05		—	0	0.05	
Low-Level,		0, 10	10		0.	05		—	0	0.05	
VoL Max.		0, 15	15		0.	05			0	0.05	
Output Voltage:	_	0, 5	5		4.	95		4.95	5		
High-Level	_	0, 10	10		9.	95		9.95	10		
Von Min.	—	0, 15	15		. 14	.95		14.95	15		l v
Input low	0.5, 4.5		5	1.5					_	1.5	
Voltage, Vı∟ Max.	1, 9		10			3				3	
	1.5, 13.5	-	15			4		L —		4	
Input High	0.5, 4.5	—	5		3	.5		3.5			
Voltage, V _{IH} Min.	1, 9		10	7				7			
	1.5, 13.5	—	15		1	1		11		_	
Input Current, I _{IN} Max.	_	0, 18	18	±0.1	±0.1	±1	±1		±10 ⁻⁵	±0.1	μA





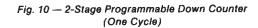
CD4522B Types


	TEST CO	DITIONS		LIMITS			
CHARACTERISTIC		V _{DD} (V)	Min.	Тур.	Max.	UNITS	
Propagation Delay Time; t _{PHL} , t _{PLH:} Clock to "Q" outputs		5 10 15		550 225 160	1100 450 320	ns	
Clock to "0" output		5 10 15	· -	420 160 110	710 270 190	ns	
Clock inhibit to "Q" outputs		5 10 15	-	270 100 70	540 200 140	ns	
Master reset to "Q" outputs		5 10 15		270 100 70	540 200 140	ns	
Preset Enable Setup Time, t _{su}		5 10 15		0 0 0	0 0 0	ns	
Preset Enable Hold Time, t _h		5 10 15		75 25 20	150 50 40	ns	
Master Reset Removal Time, t _{rem}		5 10 15		130 50 30	260 100 60	ns	
Transition Time, t _{THL} , t _{TLH}	-	5 10 15		100 50 40	200 100 80	ns	
Minimum Pulse Width Clock, twicu		5 10 15		125 50 40	250 100 80	ns	
Preset Enable, tw(PE)		5 10 15		125 50 40	250 100 80	ns	
Master Reset, twime	an ang sing tang tang tang tang tang tang tang ta	5 10 15		175 125 100	350 250 200	ns	
Max Clock Freq, fc⊾		5 10 15		3 6 8	1.5 3.0 4.0	мн	
Max Clock or Clock Inhibit Rise & Fall Time, tтын, tты		5 10 15		-	15 15 15	us	
Input Capacitance, Cin	Anv	Input	_	5	7.5	pF	

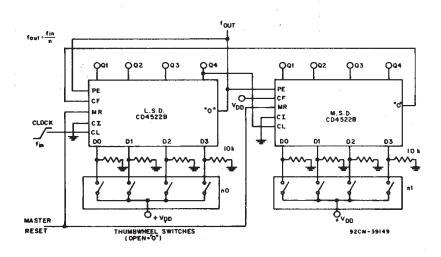


TERMINAL ASSIGNMENT

3 COMMERCIAL CMOS HIGH VOLTAGE IC8



CD4522B Types


 N
 "0"
 N-1
 CF
 LSD + 1 < N < MSD</th>

 N
 "0₃"
 N+1
 CL
 LSD < N < MSD-1</td>

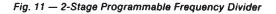
Q+^DD

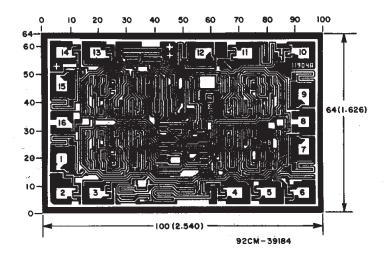
92CM-39148

ייי רי

nΟ

₽+^^{DD}


THUMBWHEEL SWITCHES (OPEN = "0")


MASTER

RESET

-

From		Тс	>	Denne of N
Stage	Pin	Stage	Pin	Range of N
LSD	"0"	All	PE	LSD < N < MSD
N	"0"	N-1	CF	LSD + 1 < N < MSD
N	"03"	N+1	CL	LSD < N < MSD-1

Dimensions and pad layout for CD4522BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CD4522BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4522BE	Samples
CD4522BEE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4522BE	Samples
CD4522BM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM522B	Samples
CD4522BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM522B	Samples
CD4522BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM522B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

www.ti.com

24-Jan-2013

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

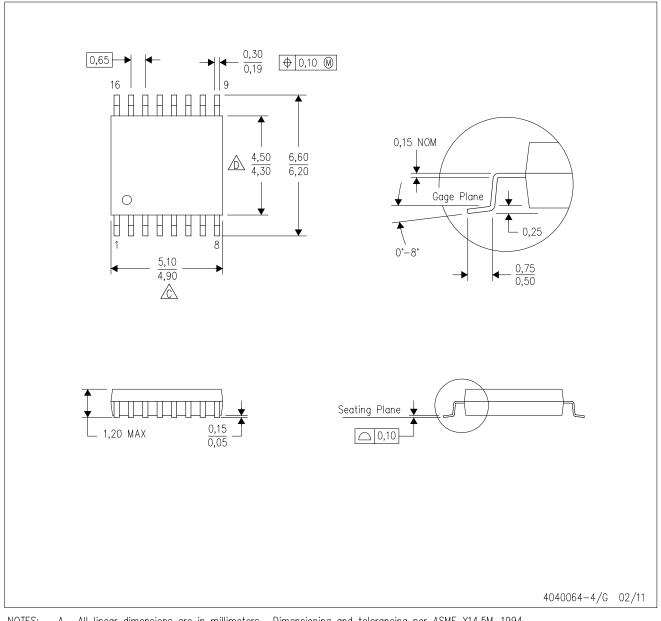
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

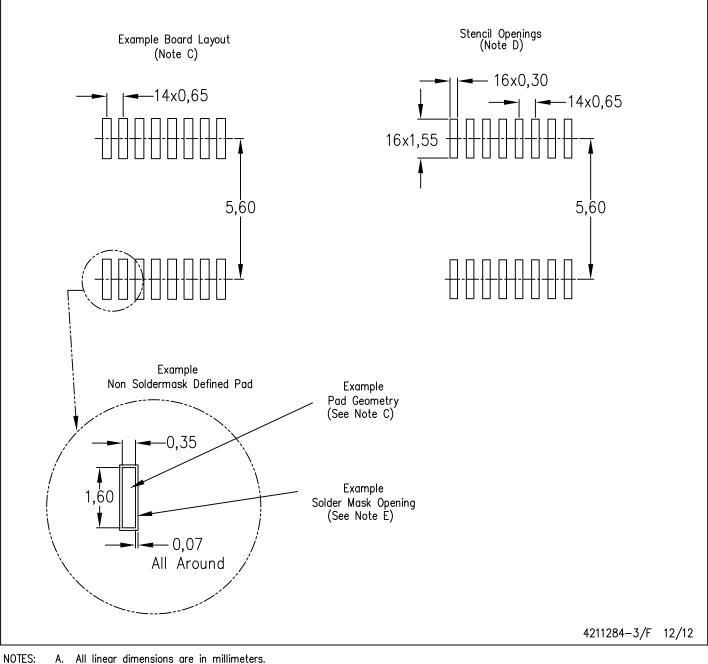
PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331