DATA SHEET

850NM SINGLE MODE VCSEL TO-46 PACKAGE

HFE4093-332

FEATURES:

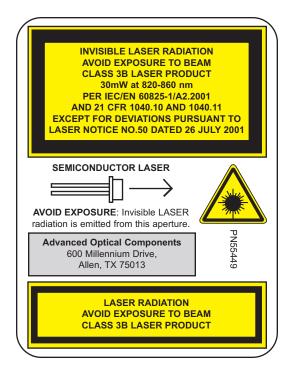
- Designed for drive currents between 1 and 5 mA
- Optimized for low dependence of electrical properties over temperature
- High speed ≥1 GHz
- Two different laser/ photodiode polarities
- Attenuating coating also available
- Packaged with a photodetector

The HFE409x-332 is a high-performance 850 nm VCSEL (Vertical Cavity Surface-Emitting Laser) packaged for high-speed data communications. This product combines all the performance advantages of the VCSEL with a custom designed power monitor diode, and is designed for ease of use by the module designer and manufacturer. The power monitor diode can be used with appropriate feedback control circuitry to set a maximum power level for each VCSEL, simplifying design for high data rate communication and eye safety.

The HFE409x-332 is a high radiance VCSEL designed to convert electrical current into optical power that can be used in fiber optic communications and other applications. As the current varies above threshold, the light intensity increases proportionally.

The HFE409x-332 is designed to be used with inexpensive silicon or gallium arsenide detectors, but excellent performance can also be achieved with some indium gallium arsenide detectors.

The low drive current requirement makes direct drive from PECL (Positive Emitter Coupled Logic) or EML (Emitter Coupled Logic) gates possible and eases driver design.


The HFE409x-332 is designed to interface with single mode or 50/125 and 62.5/125 μ m multimode fiber. HFE409x-332 produces a circularly symmetric, non-astigmatic, narrow divergence beams that, with appropriate lensing, fiber couple all of the emitter power.

Part Number		Description
	HFE4093-332	Unattenuated VCSEL with Back Monitor Photodiode - VCSEL Anode Common

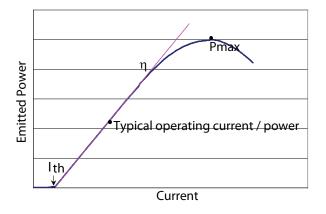
ABSOLUTE MAXIMUM RATINGS

Parameter	Rating		
Storage temperature	-40°C to +85°C		
Operating temperature	0 to +50 ^o C		
Lead solder temperature	260 ^o C, 10 seconds		
Laser Diode Reverse Voltage (I _R =10 μA)	5 V		
Laser Continuous Forward Current, Heat-Sinked	4 mA		
PIN Photodiode Forward Current	10 mA		

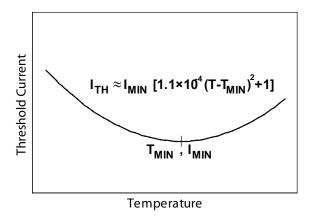
NOTICE: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

ELECTRICAL-OPTICAL CHARACTERISTICS

VCSEL Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Optical Power Output	I _F =4mA	Ро	0.7	1		mW	1
Threshold Current		Iтн			1.5	mA	
Threshold Current Temper ature Variation	$T_A = 0$ % to 70 %	ΔΙΤΗ	-1.5		1.5	mA	2
Slope Efficiency		η	0.25	0.35	0.6	mW/mA	3
Slope Efficiency Temperature variation	T _A =0 % to 70 %	Δη /ΔΤ		-6000		PPM/ C	
Peak Wavelength	I _F =4 mA	λр	835		870	nm	
λ pTemperature Variation	I _F =4 mA	ΔλρΔΤ		0.06		nm/ºC	
Laser Forward Voltage	I _F =4 mA	VF		1.9	2.5	V	
Laser Reverse Voltage	I _R =10 μA	BVR LD		-10		V	
Rise and Fall Times	Prebias Above Threshold, 20% -80%	t _r , t _f		150		ps	4
Series Resistance	I _F =4 mA	Rs	75	110	175	Ohms	
Series Resistance Temp erature Coefficient	I _F =4 mA, 0 ⁹ C to 70 ⁹ C	dR _s /dT		-2500		PPM/ °C	
Side Mode Suppression Ratio	I _F =4mA	SMSR	15	30		dB	
Change in wavelength with current		Δλρ/ΔΙ		0.25		mA/nm	
Beam Divergence		Θ_{FWHM}		11	20	Degrees	
Photodiode Parameters	Test Condition	Symb ol	Min.	Тур.	Max.	Units	Notes
Monitor Current	Po = 1mW	I _{PD}		0.035		mA	
Monitor current Temperature Variation	Po = 1mW	ΔΙΡΟ⁄ΔΤ		0.2		%/ ک	
Dark Current	Po =0mW, $V_R =3V$	ID			20	nA	
PD Reverse Voltage	Po =0mW, I $_{R}$ =10 μ A	BVR PD	30	115		V	5
PD Capacitance	V _R =0V, Freq=1MHz V _R =3V, Freq=1MHz	С		75 40	100 55	pF	


NOTES

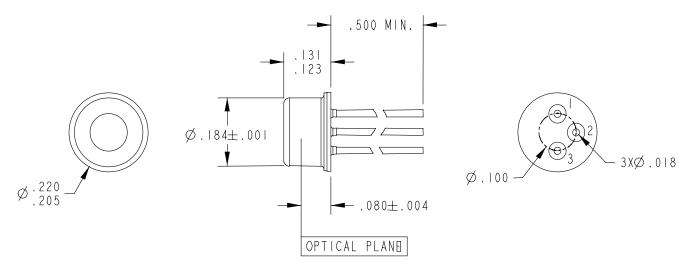
- 1. Operating power is set by the peak operating current $I_{PEAK} = I_{BIAS} + I_{MODULATION}$.
- Operation at temperatures outside the specified range may result in the threshold current exceeding the maximums defined in the electro-optical characteristics table.
- 3. Slope efficiency is defined as $\Delta Po/\Delta IF$


- 4. Rise and fall times are sensitive to drive electronics
- To safeguard the VCSEL from current spike damage, short the VCSEL anode and cathode to each other during photodiode BVR verification testing. Additionally to safeguard the PIN photodiode, limit the photodiode reverse voltage in accordance with the absolute maximum rating.

TYPICAL PERFORMANCE CURVES

Emitted Power vs. Current: Power varies approximately linearly with current above threshold.

Threshold Current vs. Temperature: Threshold current varies parabolically with temperature; thus it can be nearly constant for a limited temperature range.



TYPICAL CHARACTERISTICS OF SINGLE MODE VCSELS

They are even more sensitive to ESD than are multi-mode VCSELs or CD lasers. They operate at currents typically below 5 mA and should never be driven at much higher currents. The spectral peak shifts significantly with current, but shifts only slowly with ambient temperature. Operation at a particular wavelength can be achieved by first setting the current at an appropriate level, then adjusting the temperature.

While they are designed to stay single mode over the whole operating current range, at very high currents they may become multi-mode, increasing the spectral width and the beam divergence. Despite their low operating currents, these VCSELs can emit sufficient power to be categorized as Class 3 lasers, and should be treated with the usual precautions.

MOUNTING DIMENSIONS

MOUNTING DIMENSIONS (for reference only): All dimensions are in inches.

PINOUT

HFE40	HFE4093-332			
Number	Function			
1	K _{LD}			
2	K _{PD} , A _{LD}			
3	A _{PD}			

LEAD DESCRIPTIONS

A _{LD}	VCSEL Anode	A _{PD}	Monitor Photodiode Anode
K _{LD}	VCSEL Cathode	K _{PD}	Monitor Photodiode Cathode

ADVANCED OPTICAL COMPONENTS

Finisar's ADVANCED OPTICAL COMPONENTS division was formed through strategic acquisition of key optical component suppliers. The company has led the industry in high volume Vertical Cavity Surface Emitting Laser (VCSEL) and associated detector technology since 1996. VCSELs have become the primary laser source for optical data communication, and are rapidly expanding into a wide variety of sensor applications. VCSELs' superior reliability, low drive current, high coupled power, narrow and circularly symmetric beam and versatile packaging options (including arrays) are enabling solutions not possible with other optical technologies. ADVANCED OPTICAL COMPONENTS is also a key supplier of Fabrey-Perot (FP) and Distributed Feedback (DFB) Lasers, and Optical Isolators (OI) for use in single mode fiber data and telecommunications networks

LOCATION

- Allen, TX Business unit headquarters, VCSEL wafer growth, wafer fabrication and TO package assembly.
- Fremont, CA Wafer growth and fabrication of 1310 to 1550nm FP and DFB lasers.
- Shanghai, PRC Optical passives assembly, including optical isolators and splitters.

SALES AND SERVICE

Finisar's ADVANCED OPTICAL COMPONENTS division serves its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact a nearby sales office or call the number listed below.

AOC CAPABILITIES


ADVANCED OPTICAL COMPONENTS' advanced capabilities include:

- 1, 2, 4, 8, and 10Gbps serial VCSEL solutions
- 1, 2, 4, 8, and 10Gbps serial SW DETECTOR solutions
- VCSEL and detector arrays
- 1, 2, 4, 8, and 10Gbps FP and DFB solutions at 1310 and 1550nm
- 1, 2, 4, 8, and 10Gbps serial LW DETECTOR solutions
- Optical Isolators from 1260 to 1600nm range
- Laser packaging in TO46, TO56, and Optical subassemblies with SC, LC, and MU interfaces for communication networks
- VCSELs operating at 670nm, 780nm, 980nm, and 1310nm in development
- Sensor packages include surface mount, various plastics, chip on board, chipscale packages, etc.
- Custom packaging options

Finisar **Advanced Optical Components Division** Phone:1-866-MY-VCSEL USA (toll free) 1-214-509-2700 USA (Direct dial) 44 (0) 174 336 5533 Europe 886-935-409898 China & Taiwan 81-90-4437-1130 Japan 82-11-220-6153 Asia Pacific & Korea

Fax: 1-214-509-3709 USA

Email: support@adopco.com WEB: www.finisar.com/aoc.php

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научно-исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331