

Data sheet acquired from Harris Semiconductor SCHS042C – Revised July 2003

CD4045B Types

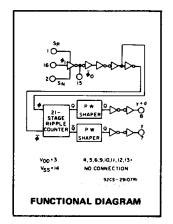
CMOS 21-Stage Counter

High-Voltage Types (20-Volt Rating)

string of 21 counter stages, two outputshaping flip-flops, two inverter output drivers, and input inverters for use in a crystal oscillator. The CD4045B configuration provides 21 flip-flop counting stages, and two flipflops for shaping the output waveform for a 3.125% duty cycle. Push-pull operation is provided by the inverter output drivers.

The first inverter is intended for use as a crystal oscillator/amplifier. However, it may be used as a normal logic inverter if desired. A crystal oscillator circuit can be made less sensitive to voltage-supply variations by the use of source resistors. In this device, the sources of the p and n transistors have been brought out to package terminals. If external resistors are not required, the sources must be shorted to their respective substrates (Sp to VDD, Sn to VSS). See Fig. 1. The first inverter in conjunction with an outboard inverter, such as 1/6 CD4069, and R_X, C_X, and RS can also be used to construct an RC oscillator. The following data is supplied as a guide in the selection of values for RX, R_S, and C_X used in Fig. 11:

- 1. R_X max = 10 $M\Omega$ with R_S = 10 $M\Omega$ and C_X = 50 pF
- 2. C_X max = 25 μ F with R_S = 560 k Ω and R_X = 50 k Ω


The CD4045B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

Applications:

- Digital equipment in which ultra-low dissipation and/or operation using a battery source is required.
- Accurate timing from a crystal oscillator for timing applications such as wall clocks, table clocks, automobile clocks, and digital timing references in any circuit requiring accurately timed outputs at various intervals in the counting sequence.
- Driving miniature synchronous motors, stepping motors, or external bipolar transistors in push-pull fashion.

Features:

- Very low operating dissipation
 <1 mW (typ.) @ VDD = 5 V, fø = 1 MHz</p>
- Medium speed (typ.) . . . $f\phi$ = 25 MHz @ V_{DD} = 10 V
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, Standard Specifications for Descripiton of 'B' Series CMOS Devices"

MAXIMUM RATINGS, Absolute-Maximum Values:

LEAD TEMPERATURE (DURING SOLDERING):

DC SUPPLY-VOLTAGE RANGE, (V_{DD})

Voltages referenced to V_{SS} Terminal)

INPUT VOLTAGE RANGE, ALL INPUTS

CINPUT CURRENT, ANY ONE INPUT

E10mA

POWER DISSIPATION PER PACKAGE (P_{D}):

For T_{A} = -55°C to +100°C

For T_{A} = +100°C to +125°C.

Derate Linearity at 12mW/°C to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

FOR T_{A} = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)

100mW

OPERATING-TEMPERATURE RANGE (T_{A})

-55°C to +125°C

STORAGE TEMPERATURE RANGE (T_{SIQ})

-65°C to +150°C

At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max+265°C

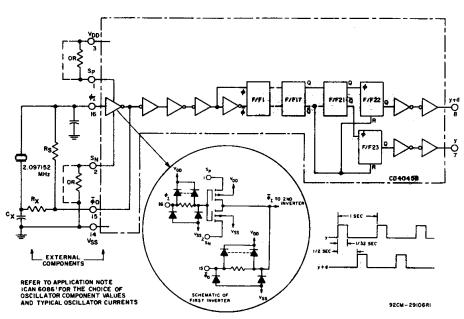


Fig. 1 - CD4045B and outboard components in a typical 21-stage counter application.

CD4045B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	CONE	OITIO	NS	LIN	IITS AT	INDICAT	rED TE	MPERAT	rures (PC)	U N I
	٧o	VIN	V _{DD}						+25		Т
	(v)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	s
Quiescent Device	_	0,5	5	5	5	150	150	_	0.04	5	
Current, IDD Max.	<u> </u>	0,10	10	10	10.	300	300	_	0.04	10	L _A
1.		0,15	15	20	20	600	600	_	0.04	20	۱ ۱۳
		0,20	20	100	100.	3000	3000	_	0.08	100	
Output Low (Sink)	0.4	0,5	5	4.5	4.3	2.9	2.5	3.6	7	1	
Current IOL Min.	0.5	0,10	10	11.2	10.5	7.7	6.3	9.1	18	-]
	1.5	0,15	15	29.4	28	19.6	16.8	23.8	47	_	mA
Output High (Source)	4.6	0,5	5	-4.5	-4.3	-2.9	-2.5	-3.6	-7	_]""]
Current, IOH Min.	9.5	0,10	10	-11.2	-10.5	-7.7	-6.3	-9.1	-18	_]
	13.5	0,15	15	-29.4	-28	-19.6	-16.8	-23.8	-47	_	
Pin 15 Output	0.4,4.6	0,5	5					±0.1	±0.18	_	
Low and High	0.5,9.5	0,10	10					±0.2	±0.3		mΑ
Current, IOL, IOH	1.5,13.5	0,15	15					±0.5	±1	_	
Output Voltage:		0,5	5			0.05		-	-	0.05	Π
Low-Level,		0,10	10	:		0.05		_		0.05	
VOL Max.		0,15	15		(0.05		_		0.05	۱۷
Output Voltage:		0,5	5			4.95	_	4.95	- 5	-	
High-Level,		0,10	10			9.95		9.95	10	-	
V _{OH} Min.	-	0,15	15		1	4.95		14.95	15	_	l
Input Low	0.5,4.5	-	5			1.5		-		1.5	H
Voltage	1,9	1	10	1		3		_	_	3	1
VIL Max.	1.5,13.5	1	15			4		_	_	4	v
Input High	0.5,4.5	_	5			3.5		3.5	_	_	"
Voltage,	1,9	1	10			7		7	-	_	
V _{IH} Min.	1.5,13.5	-	15			11		11		_	
Input Current I _{IN} Max.		0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μΑ

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

CHARACTERISTIC	V _{DD}	LIN			
— — — — — — — — — — — — — — — — — — —	(v)	Min.	Max.	UNITS	
Supply-Voltage Range (For T _A = Full Package- Temperature Range)	_	3	18	٧	
Minimum Input-Pulse Width, tw	5 10 15	_ _ _	100 50 40	ns	
Maximum Input—Pulse Frequency, fφ (External Pulse Source)	5 10 15	5 12 15	_ _ _	MHz	

CD4045B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; input $t_r,\,t_f$ = 20 ns, C_L = 50 pF, R_L = 200 $k\Omega$

	TEST		LIMITS	3		
CHARACTERISTIC	CONDITIONS	V _{DD} V	Min.	Тур.	Max.	UNITS
Propagation Delay Time:		5	_	2.2	5.5	
ϕ_{\parallel} to y or y+d out		10	l –	0.9	2.7	μs
^t PHL ^{, t} PLH	•	15	-	0.65	2	
Transition Time:		5	_	25	50	
	1	10	_	- 13	25	
^t THL ^{, t} TLH	<u> </u>	15	-	10	20	ns
Minimum Input-Pulse Width		5	_ ·	50	100	113
		10	-	25	50	
^t W		15	-	20	40	
Input-Pulse Rise or Fall Time:		5	_		500	
		10		-	500	μs
$t_r \phi$, $t_f \phi$		15	-	-	500	
Maximum Input-Pulse		5	5	10	_	
Frequency:		10	12	25	_	MHz
(External Pulse Source) f _φ		15	15	30	_	
Input Capacitance, CIN	Any Input	-		5	7.5	pF
Variation of Output Frequency		5	-	0.05	_	- ·
(Unit-to-Unit)	f = 5 MHz	10	l –	0.03	_	%
		15	_	0.1		
RC Oscillator Operation	-					
Maximum Oscillator Frequency	$R_X = 50 k\Omega$,	5	45	60	75	
(See Fig. 11)	$R_S = 560 \mathrm{k}\Omega$,	10	45	60	75	kHz
f _{osc}	$C_X = 50 pF$	15	45	60	75	

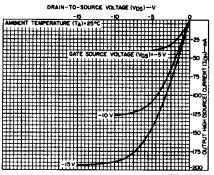


Fig. 4 — Typical output high (source) current characteristics.

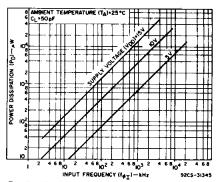


Fig. 7 — Typical power dissipation as a function of input frequency (21 counting stages).

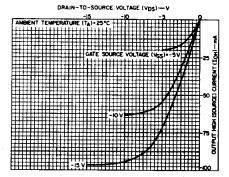


Fig. 5 – Minimum output high (source) characteristics.

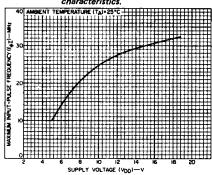


Fig. 8 — Typical maximum input-pulse frequency as a function of supply voltage.

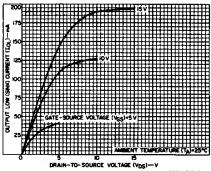


Fig. 2 — Typical output low (sink) current characteristics.

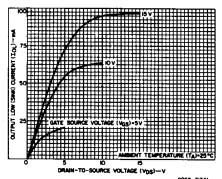


Fig. 3 – Minimum output low (sink) current cheracteristics.

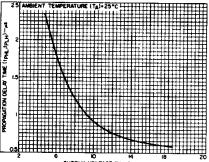


Fig. 6 — Typical propagation delay time as a function of supply voltage (\$\phi_p\$). Voltage (\$\phi_i\$ to y or y + d out vs. V_DD).

Fig. 9 — Typical RC oscillator frequency as a function of capacitance (C_X), See Fig. 11.

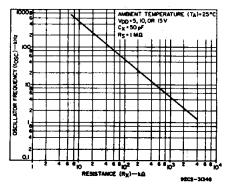


Fig. 10 — Typical RC oscillator frequency as a function of resistance (R_X),
See Fig. 11.

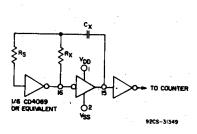


Fig. 11 - Typical RC circuit.

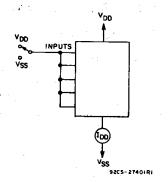


Fig. 12 - Quiescent-device-current test circuit.

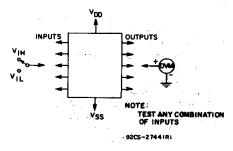


Fig. 13 - Noise-immunity test circuit.

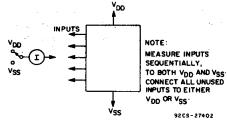
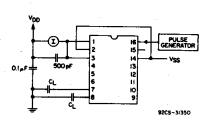
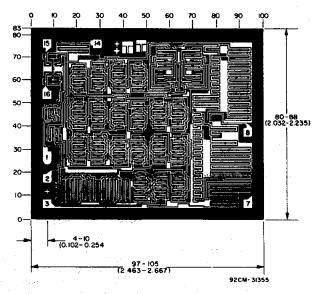
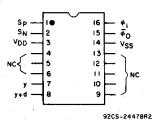


Fig. 14 - Input-leakage-current test circuit.


Fig. 15 - Dynamic power dissipation test circuit.

Chip dimensions and pad layout for CD4045B

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch),

TERMINAL DIAGRAM Top View

NC - NO CONNECTION

NOTE Observe power-supply terminal connections, V_{DD} is terminal No. 3 and V_{SS} is terminal No. 14 (not 16 and 8 respectively, as in other CD4000B Series 16-lead devices).

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD4045BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD4045BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD4045BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4045BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4045BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

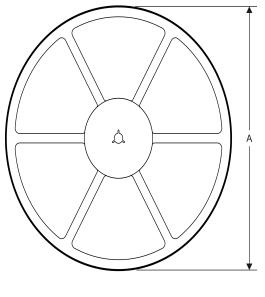
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

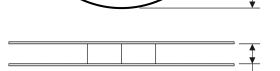
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

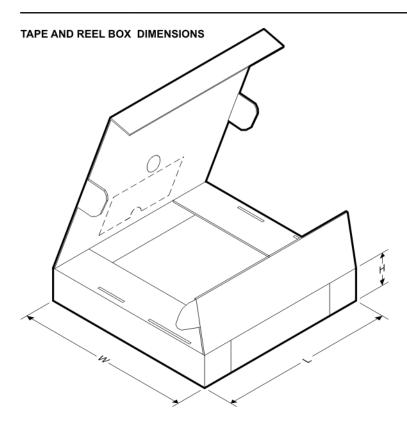
www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4045BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

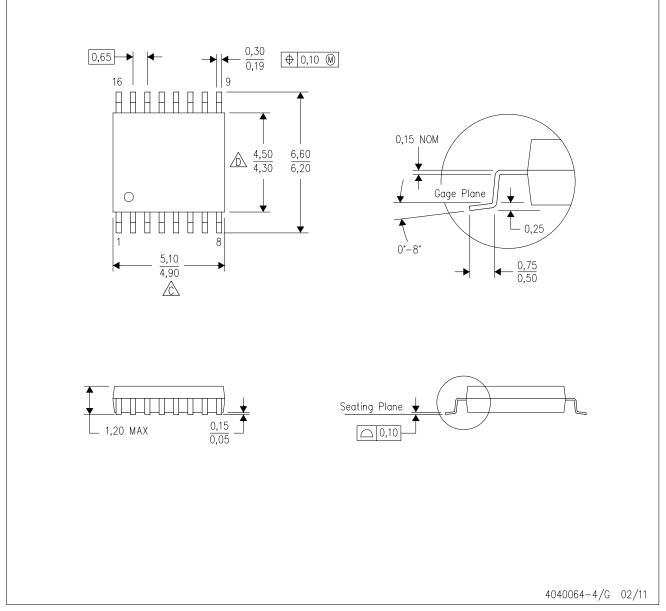
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4045BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

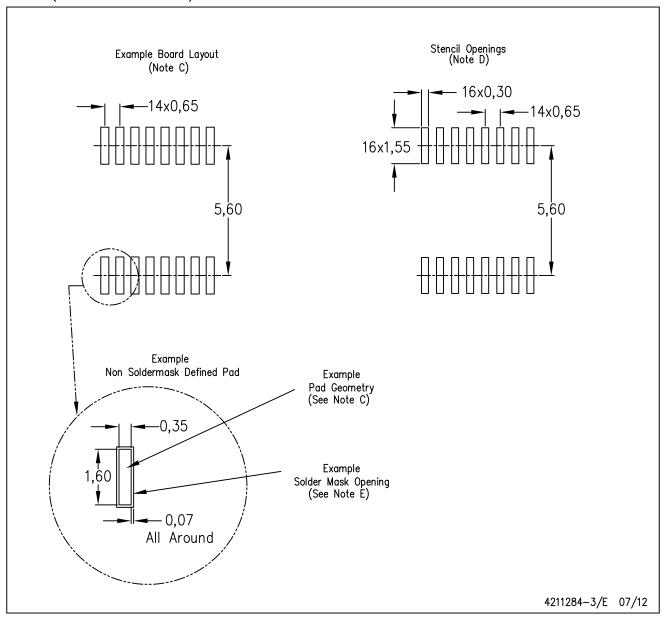
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti oom/oudio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научно-исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331