Features

(Very wide frequency coverage
\square Programmable PLL synthesizer

- 8 channels preconfigured or fully programmable SPI mode
\square Double super-heterodyne receiver architecture with $2^{\text {nd }}$ mixer as image rejection mixer
- Reception of FSK, FM and ASK modulated signals
\square Low shut-down and operating currents
I AGC - automatic gain control
\square On-chip IF filter
\square Fully integrated FSK/FM demodulator
- RSSI for level indication and ASK detection
$\square 2^{\text {nd }}$ order low-pass data filter
\square Positive and negative peak detectors
\square Data slicer (with averaging or peak-detector adaptive threshold)
- 32-pin Quad Flat No-Lead Package (QFN)
- EVB programming software is available on Melexis web site

Ordering Code

Product Code T	Temperature Code	Package Code	Option Code	Packing Form Code
MLX71122	R	LQ	BAA-000	RE
MLX71122	R	LQ	BAA-000	TU
Legend:				
Temperature Code:	: $\quad \mathrm{R}$ for Temp	ture Range -40	$105^{\circ} \mathrm{C}$	
Package Code:	LQ for QFN			
Packing Form:	RE for Ree	U for Tube		
Ordering example:	: MLX71122	-BAA-000-RE		

MLX71122
27 to 930MHz

Application Examples

\square General digital and analog RF receivers at 27 to 930 MHz

- Automatic meter reading (AMR)
\square Tire pressure monitoring systems (TPMS)
\square Remote keyless entry (RKE)
- Alarm and security systems
- Active RFID tags
- Remote controls
- Garage door openers
- Home and building automation

Pin Description

General Description

The MLX71122 is a multi-channel RF receiver IC based on a double-conversion super-heterodyne architecture. It is designed to receive FSK and ASK modulated RF signals either in 8 predefined frequency channels or frequency programmable via a 3-wire serial programming interface (SPI).
The IC is designed for a variety of applications, for example in the European bands at 433 MHz and 868 MHz or for the use in North America or Asia, e.g. at $315 \mathrm{MHz}, 447 \mathrm{MHz}$ or 915 MHz . Thanks to its versatile voltagecontrolled oscillator (VCO) design the MLX71122 can operate even at frequencies as low as 27 MHz .

MLX71122
27 to 930MHz FSK/FM/ASK Receiver

Revision History

Revision	Date	Comment
009	Oct 2009	First official release
010	Dec 2009	Corrections
011	Dec 2010	Frequency range extension (27 to 930MHz), corrections
012	Feb 2012	Fig. 21, Fig. 22 corrected, disclaimer and phone numbers updated
013	Jun 2012	Logo, ordering code

Document Content

1 Theory of Operation 7
1.1 General 7
1.2 Technical Data Overview 7
1.3 Block Diagram 8
1.4 Enable/Disable in ABC Mode 9
1.5 Demodulation Selection in ABC Mode. 9
1.6 Programming Modes 9
1.7 Preconfigured Frequencies in ABC Mode 9
2 Pin Definitions and Descriptions 10
2.1 Pin Schematics 10
2.2 RF Pin Impedance Models 15
3 Functional Description 16
3.1 Frequency Planning 16
3.1.1 Calculation of Counter Settings 18
3.1.2 Calculation of LO1 and IF1 frequency for Low Frequency Bands 18
3.1.3 Calculation of LO1 and IF1 frequency for High Frequency Bands 19
3.1.4 Counter Setting Examples for SPI Mode 19
3.1.5 Counter Settings in ABC Mode - 8+1 Preconfigured Channels 20
3.2 PLL Frequency Synthesizer 20
3.2.1 Pulse Swallow Counter 21
3.2.2 PLL Counter Ranges 22
3.2.3 Reference Oscillator (RO) 22
3.2.4 Phase-Frequency Detector (PFD) 23
3.2.5 Charge Pump (CP) 23
3.2.6 Loop Filter (LF) 24
3.2.7 Lock Detector (LD) 24
3.2.8 Voltage Controlled Oscillator (VCO) 25
3.2.9 Loop Filter Calculation 26
3.3 Receiver Front End 27
3.3.1 Low Noise Amplifier (LNA) and Mixer 1 (MIX1) 27
3.3.2 Mixer 2 (MIX2) 27
3.3.3 IF Filter (IFF) 28
3.3.4 FSK Demodulator 28
3.3.5 Autotuning Circuit 29
3.3.6 IF Amplifier (IFA) 30
3.3.7 Automatic Gain Control (AGC) 30
3.4 Data Path 31
3.4.1 Data Filter (DF) 31 MLX71122
3.4.2 Averaging Data Slicer Mode 31
3.4.3 Peak Detectors (PKDET) 32
3.4.4 Output Comparator 32
3.5 Frequency Acceptance Range 32
3.6 Biasing System 33
3.7 Operating Modes. 33
3.8 Multi Functional Output 33
3.9 SPI Description 34
3.9.1 General 34
3.9.2 Read / Write Sequences 35
3.9.3 Serial Programming Interface Timing 35
4 Register Description 36
4.1 Register Overview 36
4.1.1 Control Word R0 38
4.1.2 Control Word R1 39
4.1.3 Control Word R2 40
4.1.4 Control Word R3 40
4.1.5 Control Word R4 41
4.1.6 Control Word R5 41
4.1.7 Control Word R6 41
4.1.8 Control Word R7 (Read-only Register) 42
5 Technical Data 43
5.1 Absolute Maximum Ratings 43
5.2 Normal Operating Conditions 43
5.3 Crystal Parameters 44
5.4 Serial Programming Interface (SPI) 44
5.5 DC Characteristics 45
5.6 AC System Characteristics 46
6 Test Circuits 47
6.1 Standard FSK \& ASK Reception in 8-Channel Preconfigured (ABC) Mode 47
6.1.1 Averaging Data Slicer for Bi-Phase Codes (e.g. Manchester) 47
6.2 Standard FSK \& ASK Reception in SPI Mode 48
6.2.1 Averaging Data Slicer for Bi-Phase Codes (e.g. Manchester) 48
6.2.2 Peak Detector Data Slicer Configured for NRZ Codes. 49
6.3 Test Circuit Component List 50
7 Package Description 51
7.1 Soldering Information 51
8 Standard information regarding manufacturability of Melexis products with different soldering processes 52
9 ESD Precautions 52
10 Disclaimer 54

1 Theory of Operation

1.1 General

The MLX71122 receiver architecture is based on a double-conversion super-heterodyne approach. The two LO signals are derived from an on-chip integer-N PLL frequency synthesizer. The PLL reference frequency is derived from a crystal (XTAL). The PLL synthesizer consists of an integrated voltage-controlled oscillator with external inductor, a programmable feedback divider chain, a programmable reference divider, a phasefrequency detector with a charge pump and an external loop filter.

In the receiver's down-conversion chain, two mixers MIX1 and MIX2 are driven by the internal local oscillator signals LO1 and LO2, respectively. The second mixer MIX2 is an image-reject mixer. As the first intermediate frequency (IF1) is very high (typically above 100 MHz), a reasonably high degree of image rejection is provided even without using an RF front-end filter. At applications asking for very high image rejections, cost-efficient RF front-end filtering can be realized by using a SAW filter in front of the LNA.

The receiver signal chain is set up by a low noise amplifier (LNA), two down-conversion mixers (MIX1 and MIX2), an on-chip IF filter (IFF) as well as an IF amplifier (IFA). By choosing the required modulation via an FSK/ASK switch (at pin MODSEL), either the on-chip FSK demodulator (FSK DEMOD) or the RSSI-based ASK detector is selected. A second order data filter (OA1) and a data slicer (OA2) follow the demodulator. The data slicer threshold can be generated from the mean-value of the data stream or by means of the positive and negative peak detectors (PKDET+/-).

In general the MLX71122 can be set to shut-down mode, where all receiver functions are completely turned off, and to several other operating modes. There are two global operating modes that are selectable via the logic level at pin SPISEL:

> 8-channel pre-configured mode (ABC mode) fully programmable mode (SPI mode).

In ABC mode the number of frequency channels is limited to eight but no microcontroller programming is required. In this case the three lines of the serial programming interface (SPI) are used to select one of the eight predefined frequency channels via simple 3-bit parallel programming. Pins ENRX and MODSEL are used to enable/disable the receiver and to select FSK or ASK demodulation, respectively.

SPI mode is recommended for full programming flexibility. In this case the three lines of the SPI are configured as a standard 3 -wire bus (SDEN, SDTA and SCLK). This allows changing many parameters of the
receiver, for example more operating modes, channels, frequency resolutions, gains, demodulation types, data slicer settings and more. The pin MODSEL has no effect in this mode.

1.2 Technical Data Overview

\square Input frequency ranges: 27 to 930 MHz

- Power supply range: 3.0 to 5.5 V
- Temperature range: -40 to $+110^{\circ} \mathrm{C}$
- Shutdown current: 50nA

G Operating current: 12 mA (typ.)
\square FSK input sensitivity: -107dBm (typ.)
\square ASK input sensitivity: -112dBm (typ.)

- Internal IF2: 2 MHz with 230 kHz 3dB bandwidth

ㅁ Maximum data rate: 100kbps NRZ code, 50 kbps bi-phase code
— Minimum frequency resolution: 10 kHz

- Total image rejection: > 65dB (with external RF front-end filter)
- FSK/FM deviation range: ± 10 to $\pm 50 \mathrm{kHz}$
- Spurious emission: <-70dBm

G Linear RSSI range: > 50dB

- FSK input frequency acceptance range: 180 kHz (3dB sensitivity loss)
- Crystal reference frequency: 10 MHz

MLX71122
27 to 930 MHz

1.3 Block Diagram

Fig. 1: MLX71122 block diagram

The MLX71122 receiver IC consists of the following building blocks:

- PLL synthesizer (PLL SYNTH) to generate the first and second local oscillator signals LO1 and LO2, parts of the PLL SYNTH are the voltage-controlled oscillator (VCO), the feedback dividers N/A and R, the phase-frequency detector (PFD), the charge pump (CP) and the crystal-based reference oscillator (RO)
- Low-noise amplifier (LNA) for high-sensitivity RF signal reception
- First mixer (MIX1) for down-conversion of the RF signal to the first IF (intermediate frequency)
- Second mixer (MIX2) with image rejection for down-conversion from the first to the second IF
- IF Filter (IFF) with a 2 MHz center frequency and a 230 kHz 3 dB bandwidth
- IF amplifier (IFA) to provide a large amount of voltage gain and an RSSI signal output
- FSK demodulator (FSK DEMOD)
- Operational amplifiers OA1 and OA2 for low-pass filtering and data slicing, respectively
- Positive (PKDET+) and negative (PKDET-) peak detectors
- Switches SW1 to select between FSK and ASK as well as SW2 to chose between averaging or peak detector data slicer
- Control logic with 3-wire bus serial programming interface (SPI)
- Biasing circuit with modes control

MLX71122

1.4 Enable/Disable in ABC Mode

ENRX	Description
0	Shutdown mode
1	Receive mode

Pin ENRX is pulled down internally. Device is in shutdown by default, after power supply on. If ENRX $=0$ and SPISEL = 1 then operating modes according to OPMODE bit (refer to control word R0). If ENRX = 1 then OPMODE bit has no effect (hardwired receive mode).

1.5 Demodulation Selection in ABC Mode

MODSEL	Description
0	FSK demodulation
1	ASK demodulation

Pin MODSEL has no effect in SPI mode (SPISEL = 1). We recommend connecting it to ground to avoid a floating CMOS gate.

1.6 Programming Modes

SPISEL	Description
0	ABC mode (8 channels preconfigured)
1	SPI mode (programming via 3-wire bus)

1.7 Preconfigured Frequencies in ABC Mode

A	B	C	Receive Frequency
0	0	0	FSK1: 369.5 MHz
0	1	0	FSK5: 388.3 MHz
1	0	0	FSK2: 371.1 MHz
1	1	0	FSK4: 376.9 MHz
0	0	1	FSK3: 375.3 MHz
0	1	1	FSK7: 394.3 MHz
1	0	1	FSK6: 391.5 MHz
1	1	1	FSK8: 395.9 MHz

As all pins, pins A, B, and C are equipped with ESD protection diodes that are tied to VCC and to VEE. Therefore these pins should not be directly connected to positive supply (a logic "1") before the supply voltage is applied to the IC. Otherwise the IC will be supplied through these control lines and it may enter into an unpredictable mode. In case the user wants to apply a positive supply voltage to these pins before the supply voltage is applied to the IC, a protection resistor should be inserted in each control line.

2 Pin Definitions and Descriptions

2.1 Pin Schematics

Pin No.	Name	I/O Type	Functional Schematic	Description
1	VEELNA	ground		ground of LNA core
31	LNAI	analog input		LNA input, approx. 27Ω single-ended
3	LNAO	analog output		LNA open-collector output, to be connected to external LC tank that resonates at RF
2	VCCANA	supply		positive supply of LNA, MIX1 MIX2, IFF, IFA, FSK DEMOD, OA1, OA2, PKDET+, PKDET- and BIAS
4	VEEIF	ground		negative supply of LNA, MIX1 MIX2, IFF, IFA, and FSK DEMOD
5	MIXN	analog input		mixer 1 negative input
6	MIXP	analog input		mixer 1 positive input
7	SPISEL	CMOS input		SPI select input
8	RSSI	analog output		RSSI output, approx. $25 \mathrm{k} \Omega$
9	MODSEL	CMOS input		demodulation select input (FSK or ASK demodulation)

MLX71122
27 to 930 MHz

Pin No.	Name	I/O Type	Functional Schematic	Description
10	RBIAS	analog I/O		external resistor for voltage and current biasing, $30 \mathrm{k} \Omega$ by default, to provide stable parameters over temperature and supply variations
11	VEEVCO	ground		ground of VCO
12	TNK1	analog I/O		VCO collector output, connection 1 to external LC tank
13	TNK2	analog I/O		VCO collector output, connection 2 to external LC tank
15	LF	analog I/O		charge pump output, connection to external loop filter
14	VCCVCO	supply		positive supply of VCO
16	ENRX	CMOS input		enable/disable control input (with internal pull-down)

Pin No.	Name	I/O Type	Functional Schematic	Description
17	C/SDEN	CMOS input		frequency control line C or SPI control line SDEN
18	B/SDTA	CMOS input		frequency control line B or SPI control line SDTA
19	A/SCLK	CMOS input		frequency control line A or SPI control line SCLK
20	VEEDIG	ground		ground of PLL SYNT (except of VCO), Control Logic, and OA2 out stage
21	VCCDIG	supply		positive supply of PLL SYNT (except of VCO), Control Logic, RO and OA2 out stage
22	DTAO	CMOS output		data output, 2 mA sink or source capability

Pin No.	Name	I/O Type	Functional Schematic	Description
23	MFO	analog output (option 1)		multifunctional output: reference oscillator output selected (default setting) (see 4.1.4)
23	MFO	analog output (option 2)		multifunctional output: IF2 signal output selected (see 4.1.4)
23	MFO	digital output tristate (option 3)		multifunctional output: digital output signal selected (see 4.1.4)
24	ROI	analog input		reference oscillator input for connecting an external crystal, Colpitts type oscillator with internal feedback capacitors

Pin No.	Name	I/O Type	Functional Schematic	Description
25	PDP	analog I/O		peak detector positive output for connecting an external capacitor
26	PDN	analog I/O		peak detector positive output for connecting an external capacitor
27	DFO	analog output		data filter output
28	DF1	analog I/O		data filter connection 1 for connecting an external capacitor
29	DF2	analog I/O		data filter connection 2 for connecting an external capacitor
30	VEEANA	ground		ground of RO, OA1, OA2, PKD+, PKD- and BIAS
32	SLC	analog I/O		slicer reference input for connecting an external capacitor

2.2 RF Pin Impedance Models

The following table gives the typical equivalent circuits modelling the impedance of the RF pins including the package but without the PCB parasitics.
The LNA, MIX1 and TNK1/2 models are valid from 300 to 930 MHz , the MFO model is valid from 1 to 10 MHz .

LNAl (GAIN="10")	LNAl (GAIN="11")
LNAO (GAIN="10"'\& "11")	MIX1P \& MIX1N
MFO	TNK1/2

$\mathbf{V}_{\mathbf{L F}} / \mathbf{V}$	VCORANGE=0 VCC=3V $\mathbf{C}_{\mathrm{VCO}} / \mathbf{p F}$	VCORANGE=1 VCC=5V $\mathbf{C}_{\mathrm{Vco}} / \mathbf{p F}$
0.0	6.50	6.20
0.5	6.40	6.10
1.0	6.10	6.05
1.5	4.80	5.75
2.0	3.60	5.10
2.5	3.05	4.40
3.0	2.80	3.75
3.5	-	3.20
4.0	-	2.65
4.5	-	2.45
5.5	-	2.35

Fig. 2: $\quad \mathrm{C}-\mathrm{V}$ tuning characteristic of the VCO

The C-V characteristics for other supply voltages than given above can be derived by shifting the right end of the curves to the desired supply voltage, since the VCO frequency depends on $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{LF}}$.

MLX71122
27 to 930MHz FSK/FM/ASK Receiver

3 Functional Description

3.1 Frequency Planning

Because of the double conversion architecture that employs two mixers and two IF signals, there are four different combinations for injecting the LO1 and LO2 signals:

LO1 high side and LO2 high side:
LO1 high side and LO2 low side:
LO1 low side and LO2 high side:
LO1 low side and LO2 low side:
receiving at $f_{\text {RF High-High }}$
receiving at $f_{\text {RF High-Low }}$ receiving at f_{RF} Low-High
receiving at $f_{\text {RF Low-Low }}$

As a result, four different input frequencies could produce the same second IF (IF2). This may seem like a problem, but being able to select high or low side injection makes it possible to avoid interference from undesired signals. This can not be done with the more common receivers which are single conversion with a low IF frequency. It is also often possible with the MLX71122 to use a simple RF filter to get better image rejection than low IF receivers which have an image reject mixer.

Referring to the block diagram in fig.1, the following equations apply:
$f_{I F 2}=2.0 M H z, \quad N_{L O 2}=$ LO2DIV $=4$ or $8 \quad f_{I N}=$ desired RF signal frequency
LO1 on high side: $f_{V C O}-f_{I N}=f_{I F 1}$
LO2 on high side: $\frac{f_{V C O}}{N_{L O 2}}-f_{I F 1}=2.0 \mathrm{MHz}$
LO1 on low side: $f_{I N}-f_{V C O}=f_{I F 1}$

$$
\text { LO2 on low side: } f_{I F 1}-\frac{f_{V C O}}{N_{L O 2}}=2.0 \mathrm{MHz}
$$

From these seven equations, we get:
LO1 high side and LO2 high side: $\quad f_{V C O}=\left(f_{I N}-2 \mathrm{MHz}\right) \frac{N_{L O 2}}{N_{L O 2}-1}$
LO1 high side and LO2 low side: $\quad f_{V C O}=\left(f_{I N}+2 M H z\right) \frac{N_{L O 2}}{N_{L O 2}-1}$

LO1 low side and LO2 high side: $\quad f_{V C O}=\left(f_{I N}+2 \mathrm{MHz}\right) \frac{N_{L O 2}}{N_{L O 2}+1}$
LO1 low side and LO2 low side: $\quad f_{V C O}=\left(f_{I N}-2 M H z\right) \frac{N_{L O 2}}{N_{L O 2}+1}$
Fig. 3 on the next page shows the 4 possible RF frequencies when receiving at $f_{R F}$ High-High is desired.
Example:
Let $f_{I N}=315 \mathrm{MHz}$ and $N_{L O 2}=4$. From (1) we get $f_{V C O}=(315 \mathrm{MHz}-2 \mathrm{MHz}) \frac{4}{4-1}=417.33 \mathrm{MHz}$
and further $f_{I F 1}=102.33 \mathrm{MHz}, f_{L O 2}=104.33 \mathrm{MHz}$ and the $2^{\text {nd }}$ IF frequency is 2.0 MHz .
The image frequencies of the two mixers are now:
$f_{\text {MIXIIMAGE }}=417.33+102.33=519.66 \mathrm{MHz}$, RF response, suppressed by the RF bandpass filter, $f_{\text {MIX 2IMAGE }}=104.33+2.0=106.33 \mathrm{MHz}$, suppressed by the image rejection of mixer 2.
$f_{\text {MIX 2IMAGE }}$ leads to two further RF response frequencies:
$417.33-106.33=311.00 \mathrm{MHz}: \quad$ suppressed by 30 dB of the image rejection of mixer 2
$417.33+106.33=523.66 \mathrm{MHz}: \quad$ suppressed by 30 dB of mixer 2 plus the RF bandpass filter
In the example of Fig. 3, the image signals at 519.66 and 523.66 are suppressed by the bandpass characteristic provided by the RF front-end. The bandpass shape can be achieved either with a SAW filter (featuring just a couple of MHz bandwidth), or by the tank circuits at the LNA input and output (this typically yields 30 to 60 MHz bandwidth). In any case, the high value of the first IF (IF1) helps to suppress the image signals at $f_{R F}$ Low-High and $f_{R F}$ Low-Low.

The two remaining signals at IF1 resulting from 102.33 and 106.33 enter the second mixer MIX2. This mixer features image rejection with so-called single-sideband (SSB) selection. This means either the upper or lower sideband of IF1 can be selected. In the example of Fig. 3, LO2 high-side injection has been chosen to select the IF2 signal resulting from $f_{\text {RF }}$ High-High.

Fig. 3: The four receiving frequencies in a double conversion superhet receiver
It should be mentioned that each high-side injection mixing mirrors the frequency spectrum of the input signal. Only Low-Low and High-High injection mixing preserve the spectrum or in other words a higher frequency at RF remains a higher frequency at IF2. The polarity of the data slicer can be switched in order to compensate this for FSK reception of digital data.

It can be seen from the block diagram of Fig. 1 that there is a fixed relationship between the LO1 signal frequency $\mathrm{f}_{\mathrm{LO} 1}$ and the LO2 signal frequency $\mathrm{f}_{\text {LO2 }}$.

$$
\begin{equation*}
\text { LO2DIV }=N_{\text {LO2 }}=\frac{f_{\text {LO1 }}}{f_{\text {LO2 }}} \tag{5}
\end{equation*}
$$

The LO1 signal frequency $f_{\text {LO1 }}$ is directly synthesized from the crystal reference oscillator frequency $f_{R O}$ by means of an integer-N PLL synthesizer. The PLL consists of a dual-modulus prescaler ($\mathrm{P} / \mathrm{P}+1$) with $\mathrm{P}=32$, a program counter N and a swallow counter A .

$$
\begin{equation*}
\mathrm{f}_{\mathrm{LO} 1}=\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}}(\mathrm{~N} \cdot \mathrm{P}+\mathrm{A})=\mathrm{f}_{\mathrm{PFD}}(\mathrm{~N} \cdot \mathrm{P}+\mathrm{A})=\mathrm{f}_{\mathrm{PFD}} \cdot \mathrm{~N}_{\text {tot }} \tag{6}
\end{equation*}
$$

Since $L O 2=\frac{L O 1}{4 \text { or } 8}$,the channel frequency step, f_{CH}, is not equal to the phase-frequency detector (PFD) frequency $f_{\text {PFD }}$.

For LO2 high-side injection, the channel step size f_{CH} is given by

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CH}}=\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}} \frac{\mathrm{~N}_{\mathrm{LO} 2}-1}{\mathrm{~N}_{\mathrm{LO} 2}}=\mathrm{f}_{\mathrm{PFD}} \frac{\mathrm{~N}_{\mathrm{LO} 2}-1}{\mathrm{~N}_{\mathrm{LO} 2}} \tag{7}
\end{equation*}
$$

while the following equation is valid for LO2 low-side injection:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CH}}=\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}} \frac{\mathrm{~N}_{\mathrm{LO} 2}+1}{\mathrm{~N}_{\mathrm{LO} 2}}=\mathrm{f}_{\mathrm{PFD}} \frac{\mathrm{~N}_{\mathrm{LO} 2}+1}{\mathrm{~N}_{\mathrm{LO} 2}} \tag{8}
\end{equation*}
$$

3.1.1 Calculation of Counter Settings

Frequency planning and the selection of the MLX71122's PLL counter settings are straightforward and can be laid out on the following procedure.

For this type of counter, it is necessary that $A<N$.
For discrete frequency tuning without equal channel steps:
Find a combination of R, A and N to obtain $f_{V C O}$ from equations (1), (2), (3) or (4). A large value for R is not always necessary to get high resolution tuning. A combination of $N_{\text {тот }}$ and R can almost always be found which will give sufficient frequency accuracy even with a high PLL reference frequency. For example, 433.92 MHz can be tuned with a 10 MHz crystal with $R=17$ and $N_{\text {TOT }}=979$ with an 8.3 kHz error.

For equal channel steps without gaps:
It is necessary that $N \geq P$, it follows $(N P+A) \geq P^{2}$, so $N \geq 32$ and $N P+A=N_{\text {tot }} \geq 1024$.

3.1.2 Calculation of LO1 and IF1 frequency for Low Frequency Bands

High-high or high-low injection can be used for the low frequency bands. If equal channel steps are desired, choose a PFD frequency $f_{\text {PFD }}$ according to the table below. The R counter values are valid for a 10 MHz crystal reference frequency $f_{R O}$. The PFD frequency is given by $f_{P F D}=f_{R O} / R$.

Injection Type	$\mathrm{f}_{\mathrm{CH}}[\mathrm{kHz}]$	$\mathrm{f}_{\text {PFD }}[\mathrm{kHz}]$	R
h-h	10	13.3	750
h-h	12.5	16.7	600
h-h	20	26.7	375
h-h	25	33.3	300
h-h	50	66.7	150
h-h	100	133.3	75
h-h	250	333.3	30

The second step is to calculate the missing parameters $\mathrm{f}_{\mathrm{LO} 1}, \mathrm{f}_{\mathrm{IF} 1}, \mathrm{~N}_{\text {tot }}, \mathrm{N}$ and A . While the second $\mathrm{IF}\left(\mathrm{f}_{\mathrm{IF} 2}\right)$, the $N_{\mathrm{LO} 2}$ divider ratio and the prescaler divider ratio P are bound to $\mathrm{f}_{\mathrm{IF} 2}=2 \mathrm{MHz}, \mathrm{N}_{\mathrm{LO} 2}=4$ (or 8) and $\mathrm{P}=32$.

$$
\begin{align*}
& \mathrm{f}_{\mathrm{LO} 1}=\frac{\mathrm{N}_{\mathrm{LO} 2}}{\mathrm{~N}_{\mathrm{LO} 2}-1}\left(\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF} 2}\right) \mathrm{f}_{\mathrm{LO} 1}=\frac{4}{3}\left(\mathrm{f}_{\mathrm{RF}}-2 \mathrm{MHz}\right) \tag{10}\\
& \mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}-\mathrm{N}_{\mathrm{LO} 2} \mathrm{f}_{\mathrm{IF} 2}}{\mathrm{~N}_{\mathrm{LO} 2}-1} \quad \mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}-8 \mathrm{MHz}}{3} \tag{11}
\end{align*}
$$

Finally N and A can be calculated with equation (6).

3.1.3 Calculation of LO1 and IF1 frequency for High Frequency Bands

Typical ISM band operating frequencies like 868.3 and 915 MHz can be covered without changing the crystal or the VCO inductor. Low-low injection is usually used for the high frequency bands. If equal channel steps are desired, choose a PFD frequency $f_{\text {PFD }}$ according to the table below. The R counter values are valid for a 10 MHz crystal reference. The PFD frequency is given by $f_{\text {PFD }}=f_{R O} / R$.

Injection Type	$\mathrm{f}_{\mathrm{CH}}[\mathrm{kHz}]$	$\mathrm{f}_{\text {PFD }}[\mathrm{kHz}]$	R
I-I	20	16	625
I-I	25	20	500
I-I	50	40	250
I-I	100	80	125
I-I	250	200	50
$-I$	500	400	25

The second step is to calculate the missing parameters $f_{\text {LO1 }}, f_{I F 1}, N_{\text {tot }}, N$ and A. While the second $I F\left(f_{I F 2}\right)$, the $\mathrm{N}_{\mathrm{LO} 2}$ divider ratio and the prescaler divider ratio P are bound to $\mathrm{f}_{\mathrm{IF} 2}=2 \mathrm{MHz}, \mathrm{N}_{\mathrm{Lo} 2}=4$ (or 8) and $\mathrm{P}=32$.

$$
\begin{align*}
& \mathrm{f}_{\mathrm{LO} 1}=\frac{\mathrm{N}_{\mathrm{LO} 2}}{\mathrm{~N}_{\mathrm{LO} 2}+1}\left(\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF} 2}\right) \mathrm{f}_{\mathrm{LO} 1}=\frac{4}{5}\left(\mathrm{f}_{\mathrm{RF}}-2 \mathrm{MHz}\right) \tag{12}\\
& \mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}+\mathrm{N}_{\mathrm{LO} 2} \mathrm{f}_{\mathrm{IF} 2}}{\mathrm{~N}_{\mathrm{LO} 2}+1} \quad \mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}+8 \mathrm{MHz}}{5} \tag{13}
\end{align*}
$$

Finally N and A can be calculated with equation (6).

3.1.4 Counter Setting Examples for SPI Mode

To provide some examples, the following table shows some counter settings for the reception of the wellknown ISM and SRD frequency bands. The channel spacing is assumed to be $\mathrm{f}_{\mathrm{CH}}=100 \mathrm{kHz}$. In below table all frequency units are in MHz .

Inj	$f_{\text {RF }}$	$f_{\text {IF1 }}$	$f_{\text {LO1 }}$	$N_{\text {tot }}$	N	P	A	$\mathrm{f}_{\text {PFD }}$	R	$\mathrm{f}_{\text {REF }}$	$\mathrm{f}_{\text {LO2 }}$	$\mathrm{f}_{\text {IF2 }}$
h-h	300	97.3	397.3	2980	93	32	4	0.133	75	10	99.3	2
h-h	315	102.3	417.3	3130	97	32	26	0.133	75	10	104.3	2
h-h	434	142	576	4320	135	32	0	0.133	75	10	144	2
h-h	470	154	624	4680	146	32	8	0.133	75	10	156	2
I-I	850	171.6	678.4	8480	256	32	0	0.08	125	10	169.6	2
I-I	868	175.2	692.8	8660	270	32	20	0.08	125	10	173.2	2
I-I	915	184.6	730.4	9130	285	32	10	0.08	125	10	182.6	2
I-I	930	187.6	742.4	9280	290	32	0	0.08	125	10	185.6	2

3.1.5 Counter Settings in ABC Mode - 8+1 Preconfigured Channels

In ABC mode (SPISEL=0), the counter settings are hard-wired. In below table all frequency units are in MHz .

CH	Inj	$\mathrm{f}_{\text {RF }}$	$\mathrm{f}_{\text {IF1 }}$	$\mathrm{f}_{\text {LO1 }}$	$\mathrm{N}_{\text {tot }}$	N	P	A	$\mathrm{f}_{\text {PFD }}$	R	$\mathrm{f}_{\text {REF }}$	$\mathrm{f}_{\mathrm{LO} 2}$	$\mathrm{f}_{1 \mathrm{~F} 2}$
1	h-I	369.5	125.8	495.3	3715	116	32	3	0.133	75	10	123.8	2
2	h-I	371.1	126.4	497.5	3731	116	32	19	0.133	75	10	124.4	2
3	h-I	375.3	127.8	503.1	3773	117	32	29	0.133	75	10	125.8	2
4	h-I	376.9	128.3	505.2	3789	118	32	13	0.133	75	10	126.3	2
5	h-I	384.0	130.7	514.7	3860	120	32	20	0.133	75	10	128.7	2
6	h-I	388.3	132.1	520.4	3903	121	32	31	0.133	75	10	130.1	2
7	h-I	391.5	133.2	524.7	3935	122	32	31	0.133	75	10	131.2	2
8	h-I	394.3	134.1	528.4	3963	123	32	27	0.133	75	10	132.1	2
9	h-I	395.9	134.6	530.5	3979	124	32	11	0.133	75	10	132.6	2

3.2 PLL Frequency Synthesizer

The MLX71122 contains an integer-N PLL frequency synthesizer. The reference frequency f_{R} is derived from a stable crystal reference oscillator.

Fig. 4: Integer-N PLL Frequency Synthesizer Topology
The locked state of the PLL is defined by the following relations:

$$
\begin{equation*}
\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}}=\mathrm{f}_{\mathrm{R}}=\mathrm{f}_{\mathrm{PFD}}=\mathrm{f}_{\mathrm{FB}}=\frac{\mathrm{f}_{\mathrm{VCO}}}{\mathrm{~N}_{\mathrm{tot}}}=\frac{\mathrm{f}_{\mathrm{VCO}}}{\mathrm{~N} \cdot \mathrm{P}+\mathrm{A}} . \tag{14}
\end{equation*}
$$

In this formula the total PLL feedback divider ratio is called $N_{\text {tot }}$. The synthesized output frequency $f_{\text {vco }}$ can be changed by reprogramming the reference divider or the feedback divider according to

$$
\begin{equation*}
\mathrm{f}_{\mathrm{VCO}}=\mathrm{N}_{\mathrm{tot}} \frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}}=(\mathrm{N} \cdot \mathrm{P}+\mathrm{A}) \frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}} . \tag{15}
\end{equation*}
$$

The R counter is used to set the channel spacing. Different channels can be selected by changing the total feedback divider ratio.

MLX71122
27 to 930MHz FSK/FM/ASK Receiver

	List of Mathematical Acronyms
A	divider ratio of the swallow counter (part of feedback divider)
f_{FB}	frequency at the feedback divider output
floor (x)	The floor function gives the largest integer less than or equal to x. For example, floor(5.4) gives 5, floor(-6.3) gives -7.
$\mathrm{f}_{\mathrm{PFD}}$	PFD frequency in locked state
$\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}}=\mathrm{f}_{\mathrm{R}}$	reference frequency of the PLL
f_{RO}	frequency of the crystal reference oscillator
$\mathrm{f}_{\mathrm{VCO}}$	frequency of the VCO (equals the LO1 signal of the first mixer)
$\mathrm{N}_{\text {tot }}=\mathrm{N} \cdot \mathrm{P}+\mathrm{A}$	total divider ratio of the PLL feedback path
N	divider ratio of the program counter (part of feedback divider)
$\mathrm{N}_{\mathrm{LO} 2}$	LO2DIV divider ratio, to derive the LO2 signal from LO1 ($\mathrm{N}_{1}=4$ or 8)
P	divider ratio of the prescaler (part of feedback divider)
R	divider ratio of the reference divider R

3.2.1 Pulse Swallow Counter

The programmable feedback divider of the PLL is based on a pulse-swallow topology. Fig. 5 depicts its implementation, consisting of a dual-modulus prescaler, an RS latch and two programmable counters.

Fig. 5 Pulse Swallow Counter Topology

During one cycle of $f_{F B}$ the prescaler begins the operation by dividing by $\mathrm{P}+1$ until the swallow counter A is full. The RS latch is then set and changes the prescaler modulus to P (via the modulus control signal MC) and disables the swallow counter. The division process continues until the program counter N is full and the RS latch is reset.

Fig. 6 Pulse Swallow Divider Timing

Therefore the overall feedback divide ratio is:

$$
\begin{equation*}
(P+1) \cdot A+P \cdot(N-A)=N \cdot P+A \tag{16}
\end{equation*}
$$

Further restrictions can be derived from above equation: $A<P$ and $A<N$.
Some math shows that for uniform frequency steps without gaps ($N \geq P$) the following condition is necessary:

$$
\begin{equation*}
\mathrm{N} \cdot \mathrm{P}+\mathrm{A} \geq \mathrm{P} \cdot \mathrm{P} \tag{17}
\end{equation*}
$$

3.2.2 PLL Counter Ranges

In order to cover the frequency range of about 27 to 930 MHz the following counter values are implemented in the receiver:

PLL Counter Ranges				
\mathbf{A}	\mathbf{N}	\mathbf{R}	\mathbf{P}	
0 to 31 (5bit)	3 to 2047 (11bit)	3 to 2047 (11bit)	32	

Therefore the minimum and maximum divider ratios for uniform frequency steps are given by:

$$
\mathrm{N}_{\text {totmin }}=32 \cdot 32=1024 \quad \mathrm{~N}_{\text {totmax }}=2047 \cdot 32+31=65535
$$

3.2.3 Reference Oscillator (RO)

The reference oscillator is based on a Colpitts topology with two integrated functional capacitors as shown in figure 7. The circuitry is optimized for a load capacitance range of 10 pF to 15 pF . The equivalent input capacitance CRO offered by the oscillator input pin ROI is about 15 pF . To ensure a fast and reliable start-up and a very stable frequency over the specified supply voltage and temperature range, the oscillator bias circuitry provides an amplitude regulation. Via SPI it is possible to adjust the typical core current with register ROCUR. There are four values available (see 4.1.7). At the default setting $355 \mu \mathrm{~A}$, the amplitude

Fig.7: RO schematic

3.2.4 Phase-Frequency Detector (PFD)

The phase-frequency detector (in conjunction with the charge pump) generates a voltage step at the loop filter pin LF. This voltage step is proportional to the phase difference between the digital input signals f_{R} and f_{FB}. The implementation of the phase detector is phase-frequency type. This circuitry is very useful because it decreases the acquisition time significantly even if both frequencies differ very much. The phase-frequency detector creates Up and Down signals that control the charge pump and that are also used for the lock detection circuit. The first rising edge of one of the input signals, after a reset of Up and Down, sets either the Up or the Down signal from LOW to HIGH. The following rising edge of the other signal resets Up and Down. If the register setting PFDPOL (see 4.1.2) is HIGH, the PFD polarity is positive. This means a rising edge of the signal f_{R} sets Up from LOW to HIGH and a rising edge of the signal $f_{F B}$ sets Down from LOW to HIGH. If PFDPOL is LOW, the PFD polarity is negative and the assignment of $U p$ and Down to the signals f_{R} and $f_{F B}$ is swapped.

In the MLX71122 receiver the VCO frequency increases if the loop filter output voltage increases and vice versa. The PFD polarity needs to be positive to achieve the correct feedback in the PLL loop. If an external varactor diode is added to the VCO tank, the tuning characteristic may change from positive to negative depending on the particular varactor diode circuitry. Therefore the PFDPOL bit can be used to define the phase-frequency detector polarity.

3.2.5 Charge Pump (CP)

The Charge Pump is controlled by the Up and Down signals of the Phase-Frequency Detector. If the Up signal is HIGH, then the charge pump current I_{CP} is sourced from the positive supply rail to the loop filter pin LF (pin 15). If the Down signal is HIGH, then the current $\mathrm{I}_{\mathrm{CP}} \mathrm{I}_{\text {i }}$ drained from pin LF to ground.
The gain of the phase detector in conjunction with the charge pump can be expressed as:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{PD}}=\frac{\mathrm{I}_{\mathrm{CP}}}{2 \pi}, \tag{18}
\end{equation*}
$$

whereas I_{CP} is the charge pump current which is set via register CPCUR (see 4.1.2). Default of $\mathrm{I}_{\mathrm{CP}} \mathrm{I}^{\text {is }} 100 \mu \mathrm{~A}$. The static Up and Down selections of I_{CP} can be used for test purposes.

3.2.6 Loop Filter (LF)

Since the loop filter has a strong impact on the function of the PLL, it must be chosen carefully. The suggested filter topology is shown in Fig. 8.

The loop filter of the PLL is set up by an external resistor and two external capacitors. It constitutes a 2nd order passive filter. This approach allows the user to easily adapt the loop filter bandwidth to different requirements. As a rule of thumb the loop filter bandwidth of an integer-N PLL should be set 10 times smaller than the PFD frequency. This is to achieve a stable PLL with a flat VCO noise floor.

The loop filter bandwidth depends on the external resistor and capacitors as well as on the VCO gain, the charge pump current and the so-called phase margin. A phase margin of 45° is commonly used for highest PLL stability. It is recommended to follow the component lists of section 6 for choosing appropriate values of the loop filter resistor and capacitors.

A good source for a detailed PLL analysis is: "Gardner, F.M., PhaseLocked Loop Techniques, John Wiley \& Sons, 1980."

Fig. 8: $\quad 2^{\text {nd }}$ order Loop filter

3.2.7 Lock Detector (LD)

In SPI mode a lock-detect signal LD is available at pin 23 if MFO is set to 1000 (binary) in control word R3 (see 4.1.4). The pin output is HIGH when the PLL is locked in. Alternatively the lock-detect signal is visible in bit 10 of R7 (see 4.1.8) if bit SHOWLD in R1 (see 4.1.2) is HIGH. The lock detection circuitry uses the Up and Down signals from the phase-frequency detector to check them for phase coherency. Figure 9 shows an overview of the lock signal generation. The locked state and the unlock condition will be controlled by the register settings of LDTIME and LDERR. During the start-up phase of the PLL, Up and Down signals are quite unbalanced. Therefore the Lock Detector circuit waits the time span that is programmed in divider DIV_LDTIME before a first lock can occur. The time span is dependent on the period of the reference signal f_{R}. By default it is $16 / f_{\mathrm{R}}$ (see 4.1.2). When the PLL approaches steady state, the signals Up and Down begin to overlap. The time span within which the signals are not overlapping is assessed by using a programmable delay gate. If it is shorter than programmed in LDERR (see 4.1.2) then the LD output is set to HIGH. By default the error time should be shorter than 15 ns . A second option is shorter than 30 ns .
After LD is set to HIGH the divider is disabled and the lock state remains unchanged until the unlock signal resets the divider.

Fig. 9: Lock Detection Circuit

MLX71122
27 to 930 MHz FSK/FM/ASK Receiver

3.2.8 Voltage Controlled Oscillator (VCO)

The receiver includes an LC-based voltage controlled oscillator with an external inductor connected between pins TNK1 and TNK2. Two internal varactor diodes in series combination are forming the tuneable part of the oscillator tank. The oscillation frequency is adjusted by the DC voltage at pin LF. The tuning sensitivity of the VCO is approximately $83 \mathrm{MHz} / \mathrm{V}$ for 433 MHz operation and $105 \mathrm{MHz} / \mathrm{V}$ at 868 MHz , respectively. Since the cathodes of the varactors are tied to VCC, a higher voltage at pin LF or an Up-signal of the PFD forces the capacitance to decrease and the VCO frequency to increase. With positive phase detector polarity (PFDPOL $=$ HIGH) the edges of the signal $f_{F B}$ will catch up to the reference signal f_{R} (see Fig. 4),
The VCO current VCOCUR can be adjusted via the SPI in order to ensure stable oscillations over the whole frequency range. Also the bias current of the output buffer can be increased with VCOBUF to enhance its driving capability at the high frequency bands above
 800 MHz (see section 4.1.2). If the supply voltage is lower than 5 V it is possible to adjust the tuning range of the VCO with VCORANGE (see 4.1.2). The minimum supply voltage is 3 V .

3.2.9 Loop Filter Calculation

The values of the loop filter elements depend on several parameters which are the:

- peak charge pump current, $I_{C P}$
- VCO gain, Kvco
- desired phase margin of the open PLL loop transfer function, Φ_{M}
- desired closed PLL loop bandwidth, f_{C}
- the feedback divider ratio, N

The peak charge pump current of the MLX71122 can be set to $100 \mu \mathrm{~A}$ or $400 \mu \mathrm{~A}$ (see 4.1 .2).
The VCO gain depends on the external tank inductor LO and the VCORANGE setting (see 4.1.2). The following table gives typical VCO gain values of the evaluation boards together with the frequency band.

Typical VCO Gain			
Band / MHz	L0 inductor / nH	$\mathbf{K}_{\text {vco }} / \mathbf{M H z} / \mathbf{V}$, VCCRANGE=0	$\mathbf{K}_{\mathrm{vco}} / \mathbf{M H z} / \mathbf{V}$, VCCRANGE=1
27	1500	3	1.5
315	33	128	60
434	22	188	85
868	5.6	222	108
915	5.6	250	116

The phase margin Φ_{M} determines the stability of the PLL. It should be larger than 45°. A phase margin of 56.4° should be preferred.
The closed loop PLL bandwidth f_{C} of a receiver should be as large as possible in order to allow fast settling of the frequency. On the other hand it should be so low that the reference spurs at the PFD frequency are sufficiently suppressed. A good compromise is to make $f_{C} 1 / 10$ of the PFD frequency. Therefore it is desirable to make $f_{\text {PFD }}$ as large as possible or the R divider as small as possible but not smaller than 20. The feedback ratio between the VCO output frequency and the PFD frequency shall be called N.

The following empirically derived formulas are rules of thumb for a phase margin of 56.4° and for receivers. ω_{u} shall be the unity gain bandwidth in rad/s of the open loop PLL transfer function.

$$
\begin{align*}
& \omega_{U}=\frac{2 \pi f_{C}}{1.62} \tag{19}\\
& a_{0}=3.3 \cdot \frac{I_{C P} \cdot K_{V C O}}{N \cdot \omega_{U}^{2}} \tag{20}\\
& C_{F 2}=\frac{a_{0}}{11} \tag{21}\\
& C_{F 1}=\frac{a_{0} \cdot 10}{11} \tag{22}\\
& R_{F}=\frac{3.63}{a_{0} \cdot \omega_{U}} \tag{23}
\end{align*}
$$

The loop filter capacitors for 868 and 915 MHz in the component list in section 6.3 are scaled down compared to the calculated values. Therefore the resistors have been scaled up by the same factor.

3.3 Receiver Front End

The radio frequency (RF) front-end of the receiver is a double-superheterodyne configuration that converts the input RF signal via a first intermediate frequency (IF1) signal to a second intermediate frequency (IF2) signal. While the range of IF1 can vary between 100 and 200 MHz , IF2 is fixed to 2 MHz . Both signals are completely processed internally. According to the block diagram (see Fig. 1), the front-end consists of an LNA, a first mixer (MIX1), a second mixer (MIX2), an internal IF filter (IFF) and an IF limiting amplifier (IFA) with received signal strength indicator (RSSI). The local oscillator signal for mixer 1 (LO1) is directly generated in the PLL frequency synthesizer. The LO2 signal for mixer 2 is derived from the LO1 signal via a divider (see 4.1.4).

There is no inherent suppression of the first mixer's image frequency. It depends on the particular application and the system's environmental conditions whether an RF front-end filter should be added or not. If image rejection and/or good blocking immunity are relevant system parameters, a band-pass filter must be placed either in front or after the LNA. This filter can be a SAW (surface acoustic wave) or LC-based filter (e.g. helical type). Because mixer 2 is an image rejection mixer, the image frequencies of the second mixing process are suppressed (see Fig. 2). The advantage of a two stage mixing receiver is the higher gain that can be achieved in the front end.

3.3.1 Low Noise Amplifier (LNA) and Mixer 1 (MIX1)

The LNA is based on a cascode topology for low-noise, high gain and good reverse isolation. The open collector output has to be connected to an external resonance circuit tuned to the receive frequency. The gain of the LNA can be changed to achieve a high dynamic range. There are four gain settings selectable by the control bits LNAGAIN (see 4.1.1). Default setting is the highest gain. The gain settings are automatically set if the automatic gain control (AGC) feature is activated (see 4.1.4).

The first mixer is a double-balanced mixer which converts the receive frequency to IF1. The default LO injection type for RF frequencies below 600 MHz should be high side ($f_{L O 1}=f_{R X}+f_{I F 1}$). Low side injection ($f_{L O 1}=f_{R X}-f_{I F 1}$) is recommended for the higher frequency bands. Since the data polarity of an FSK modulated signal will be inverted by changing the injection side it is possible to change the data polarity at the data output (DTAO) via bit DTAPOL (see 4.1.1). Two gain settings of mixer 1 can be selected through MIX1GAIN (see 4.1.1): 14dB as a default value or OdB optionally.

3.3.2 Mixer 2 (MIX2)

The second mixer is a double-balanced image rejection mixer in Hartley architecture using a complex poly-phase filter that converts the IF1 to the IF2 signal. The default LO injection type is low side ($f_{\text {LO2 }}=f_{I F 1}-f_{I F 2}$), but also high side injection is possible ($f_{\text {LO2 }}=f_{\mathrm{IF}_{1}}+\mathrm{f}_{\mathrm{FF} 2}$), by setting SSBSEL to LOW (see 4.1.1). As for mixer 1, the injection side determines the polarity of the output signal. Two gain settings of mixer 2 can be selected by MIX2GAIN (see 4.1.1), a setting at 9 dB (default) and one at -2 dB .

Fig. 12: Mixer 2 (Image Rejection Mixer)

3.3.3 IF Filter (IFF)

The MLX71122 comprises an internal IF filter with a -3 dB bandwidth of 220 kHz and a -40 dB attenuation bandwidth of 1.6 MHz . The filter contains three capacitively coupled bi-quad stages that represent resonant tanks close to the filter center frequency of 2 MHz . The filter prototype is given in Fig.13. There exists an approximation formula to calculate the elements Ccx and Ctx when the center frequency, the -3dB bandwidth, the impedance level R and the inductivity L are given. The Ccx to Ctx ratio scales with the Qfactor of the bandpass filter. As a consequence of this the shape of the filter doesn't change in the Bode-plot if L is increased or decreased. This means the filter should always have about the same bandwidth if it is tuned to a certain center frequency.

Fig. 13: IF filter prototype
Each LC-tank is realized as a bi-quad stage using transconductance cells that can be tuned by changing the bias current. This allows tuning of the center frequency. The bandwidth is related to the center frequency by the ratio of the coupling and the tank capacitors. Accuracy of the bandwidth relies on matching of the capacitors. The internal control word in IFFVAL (see 4.1.8) determines the current consumption of the filter and therefore of the whole receiver. Higher values lead to higher current consumptions. The deviation from the nominal current consumption can be about $\pm 0.75 \mathrm{~mA}$. Four gain settings of the IF filter are selectable via IFFGAIN in register R0 (see 4.1.1). The default value is 0 dB , other options are $-14 \mathrm{~dB},-6 \mathrm{~dB}$ and +6 dB . It is recommended to leave the value at 0 dB .

3.3.4 FSK Demodulator

FSK reception is turned on if bit MODSEL in register R5 is set to LOW (default). The demodulator is completely internally implemented, so no external, expensive discriminator device is needed. The used FSK demodulator is based on a phase shifter and a mixer as depicted in Fig.14.

Fig. 14: Block diagram of FSK demodulator
The phase shifter provides a phase shift of 90 degrees to the original IF signal at exactly 2 MHz . There is no AFC feature integrated since the frequency acceptance range of the demodulator is wide enough with about $\pm 150 \mathrm{kHz}$. The phase shift is regulated by the same control loop that controls the center frequency of the IFfilter. Tuning of the IF-filter will also change the DC value of the demodulator output. We recommend turning off the tuning during receive mode using IFFHLT (see 4.1.7) if small frequency deviations below $\pm 20 \mathrm{kHz}$ have to be detected. The gain of the demodulator can be changed with bit DEMGAIN (see 4.1.1). It can be set to $12 \mathrm{mV} / \mathrm{kHz}$ (default) or to $14.5 \mathrm{mV} / \mathrm{kHz}$.

3.3.5 Autotuning Circuit

An auto-tuning mechanism is implemented that permanently adjusts the bias current of the transconductance cells of the IF filter and the FSK demodulator in order to eliminate process, temperature and supply voltage variations. For this purpose a matched master bi-quad is used as oscillator in a current controlled oscillator (CCO) at 3MHz embedded in a PLL structure. A more detailed view on the tuning circuit is shown in Fig. 15.

Fig.15: block diagram of digital tuning circuitry
The inputs are the RO frequency, output of the $2^{\text {nd }}$ mixer, two register words (IFFPRES and RIFF, see 4.1.6 and 4.1.7) and 2 register bits (IFFHLT and IFFTUNE, see 4.1.7). The tuning circuit is working when IFFTUNE is HIGH and IFFHLT is LOW. If IFFHLT is HIGH then the digital tuning value IFFVAL remains at the last value. At falling transitions of IFFTUNE the preset value IFFPRES is loaded into the internal IFFVAL register and the tuning stops as well. IFFVAL and IFFSTATE (see 4.1.8) can be read out from register 7 if the MFO pin is programmed as SPI output (see 4.1.4). IFFSTATE shows the last action of the tuning circuit. It can show if the last value was increased, decreased or kept. A fourth state is indicating that the CCO is not running because of IFFHLT/IFFTUNE or a defect. It is possible to route the CCO output signal to the MFO pin for test purposes and to determining the ratio of the CCO and the filter.
The working principle of the digital tuning circuit is as follows. First the crystal frequency is divided by RIFF and then by 4 . This is the tuning period with which the IFFVAL values can be changed. Now the digital control counts the positive edges of the CCO output in half of the tuning period. The typical count value for perfect tuning should be 400 . Since the CCO shows phase noise it is necessary to define a certain dead band in which no tuning takes place. The limits are hardwired in the control logic and can not be changed. The lower dead band limit is 394 and the upper limit is 407 . If the counts of CCO are smaller or larger than these values then the circuit increases or decreases IFFVAL by one. There is no change of IFFVAL if the count is inside the dead band.
Unfortunately glitches produced in the digital tuning circuit cause IFFVAL to be decreased even in the dead band. The glitches appear randomly but about 10 to 20 within one second. This causes the filter to be pushed towards the lower dead band limit. Once it is reached, IFFVAL will be decreased by 1 for one tuning period and be immediately increased in the next tuning period since the CCO count is smaller than 394. If the FSK frequency deviation is smaller than 15 kHz and the peak detectors are used, then we recommend to disable the tuning with IFFHLT=1 during the reception period.
For typical process parameters, at room temperature and for 5 V supply voltage the following assumptions can be made. One LSB of IFFVAL will shift the filter frequency by about 10.2 kHz . The demodulator gain at low gain setting is about $12 \mathrm{mV} / \mathrm{kHz}$ (leading to 120 mV pulses due to the glitches!), one LSB of RIFF will shift
the filter frequency by about 3 kHz (reciprocal to RIFF!), one LSB of the CCO count shifts the frequency error of the filter by about 5 kHz . The temperature drift of the filter is about 0.47 IFFVAL steps per Kelvin so the drift of the filter is about 4.8 kHz per Kelvin.

3.3.6 IF Amplifier (IFA)

After passing the IF filter the receiving signal is amplitude limited by means of a high gain limiting amplifier. Its small signal gain is about 68 dB . A received signal strength indicator (RSSI) voltage is generated in the IF amplifier. It is available at pin RSSI. The voltage at this pin is proportional to the input level of the receiver (in dB scales). There are two sensitivity settings selectable with RSSIGAIN (see 4.1.2), one with about $39 \mathrm{mV} / \mathrm{dB}$ and the default setting with about $51 \mathrm{mV} / \mathrm{dB}$. By using this RSSI output signal the incoming signal strength of different transmitters can be determined. The same RSSI signal is used for receiving ASK modulated signals if MODSEL (see 4.1.6) is HIGH.

The IFA generates two digital signals RSSIL and RSSIH that indicate the level range of the RSSI voltage. If the level is in the lower quarter of the RSSI voltage range then both signals are LOW. If it is in the upper quarter of the RSSI range then both signals are HIGH. In between, the RSSIL signal is HIGH and RSSIH is LOW. Both values can be read out from register R7 of the IC (see 4.1.8). These two signals are also used for the AGC feature.

3.3.7 Automatic Gain Control (AGC)

The Automatic Gain Control (AGC) can be activated in SPI mode with AGCEN (see 4.1.4). By default, it is turned off. It uses the RSSIH and RSSIL signals of the IF amplifier to determine whether the gain has to be increased or decreased. The gain will be decreased beginning with the gain of the last stage. The gain increase works vice versa. The AGC circuit controls the gain of the LNA, and of mixer 1 and mixer 2. To avoid rapid gain switching, caused by short signal strength fluctuations or during ASK reception, the gain control operates with a time delay that can be programmed via AGCDEL (see 4.1.4). The time delay also depends on the PFD frequency of the IF filter auto-tuning circuit. There is no delay by default. AGCMODE (see 4.1.5), a second setting, determines whether the delay is applied for gain increase and decrease or only for gain increase. By default, a delay for increase and decrease is used. MLX71122

3.4 Data Path

The data path contains all circuitry that is used to process the baseband signal. The MLX71122 comprises a second order Sallen-Key lowpass filter, two peak detectors and an output comparator as digital signal output.

3.4.1 Data Filter (DF)

The receive part of the MLX71122 contains a $2^{\text {nd }}$ order Sallen-Key low-pass filter that can be configured by connecting two external capacitors C8 and C9 to the IC (see sec. 6). This data filter removes high frequency components and noise from the demodulated signal that may otherwise lower the signal to noise ratio at the comparator input. The filter bandwidth has to be adjusted to the maximum data rate. A good choice for the 3dB bandwidth is 85% of the data rate for NRZ codes and 170% for bi-phase or Manchester codes.
A characteristic between Bessel and Butterworth is best used in the data filter.
Since the internal resistors of the filter are both $200 \mathrm{k} \Omega$ and the overall gain is set to unity we obtain the following table for the capacitor values:

Coding	C8	C9
NRZ Code	$1.47 \cdot \mathrm{C} 9$	$\frac{640 \mathrm{pF}}{\text { data rate } / \mathrm{kbps}}$
Bi-Phase Code	$1.47 \cdot \mathrm{C} 9$	$\frac{320 \mathrm{pF}}{\text { data rate } / \mathrm{kbps}}$

C9 should be rounded (down preferred) to the closest E-series value. C8 should be calculated from the rounded value before rounding it (down preferred) to the closest E-series value.

Example: base band signal 4kbps, NRZ coding

$$
\begin{array}{ll}
\mathrm{C} 9=\frac{640 \mathrm{pF}}{4[\mathrm{kbps}]}=160 \mathrm{pF} & \text { in E-series } \Rightarrow \mathrm{C} 9=150 \mathrm{pF} \\
\mathrm{C} 8=1.47 \cdot 150 \mathrm{pF}=220.5 \mathrm{pF} & \text { in E-series } \Rightarrow \mathrm{C} 8=220 \mathrm{pF} \tag{25}
\end{array}
$$

3.4.2 Averaging Data Slicer Mode

The averaging data slicer mode is the default setting for the data path of the MLX71122. Bit SLCSEL in register R0 (see 4.1.1) is LOW if it is active and switch SW2 connects the pin SLC with DFO via a $200 \mathrm{k} \Omega$ resistor (see Fig. 1). With an external capacitor C10 at pin SLC, a simple low pass filter is formed that generates the threshold voltage for the output comparator. The value of C 10 depends on the length of the packet preamble, the coding and the data rate. The larger the C10 value the longer the time until valid output data can be received at pin DTAO.
Averaging data slicer mode can be used for bi-phase or Manchester encoded bit streams since the DCcontent of these codes is almost zero. The RC-time constant of the slicer can be calculated using:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{sLC}}=200 \mathrm{k} \Omega \cdot \mathrm{C} 10 \tag{26}
\end{equation*}
$$

We recommend that $t_{\text {SLC }}$ is at least 25 times as long as the bit time of the equivalent NRZ signal.
Example: base band signal 4kbps, NRZ coding

$$
\mathrm{C} 10=\frac{25 \cdot 0.25 \mathrm{~ms}}{200 \mathrm{k} \Omega}=31.25 \mathrm{nF} \quad \text { in E-series } \Rightarrow \mathrm{C} 10=33 \mathrm{nF}
$$

MLX71122

3.4.3 Peak Detectors (PKDET)

Peak detector mode is recommended for fast acquisition of the received data and if NRZ code is used. We recommend turning off the IFF auto tuning after the PLL lock during FSK-reception in peak detector mode. The peak detectors can be activated by setting SLCSEL to HIGH in register R0 (see 4.1.1). This connects SLC (pin 32) with the resistive voltage divider between PDP (pin 25) and PDN (pin 26) (see Fig. 1). The peak detector at PDP is used to detect the maximum of the voltage at DFO and the peak detector at PDN detects the minimum of the voltage at DFO. Since the voltage divider is symmetric, the threshold voltage will be in the middle of the minimum and maximum voltages at DFO. The peak voltages are proportional to the charge that is stored on the peak detector capacitors at PDP (C11) and PDN (C12). All pull-up and pull-down currents are given in sec. 5.5. Because both pins are connected via a $2 \mathrm{M} \Omega$ resistor, both peak detector capacitors will be discharged with a time constant depending on the value of the capacitors. For equal values of both capacitors ($\mathrm{C}=\mathrm{C} 11=\mathrm{C} 12$), the time constant will be:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{DIS}}=2 \mathrm{M} \Omega \cdot 0.5 \cdot \mathrm{C} \tag{27}
\end{equation*}
$$

The minimum value of $t_{\text {DIS }}$ is limited by the maximum number of equal consecutive bits. A value of $t_{\text {DIS }}$ of at least 4 times the number of equal consecutive bits is a good choice.

Example: base band signal 4kbps, NRZ coding, max. 32 equal consecutive bits

$$
\mathrm{C} 11=\mathrm{C} 12=\frac{32 \cdot 4 \cdot 0.25 \mathrm{~ms}}{0.5 \cdot 2 \mathrm{M} \Omega}=32 \mathrm{nF} \quad \text { in E-series } \Rightarrow \quad \mathrm{C} 11=\mathrm{C} 12=33 \mathrm{nF}
$$

The maximum capacitor value may also be limited by the pull-up and pull-down currents of the peak detectors given in sec. 5.5, because C11 and C12 have to be charged during the first bits of the preamble of the data packet. The capacitors C11 and C12 are discharged if the circuit is powered but not in receive mode (see 3.8). The capacitor C11 will be pre-charged with ground potential and C12 will be pre-charged with VCC potential in order to prepare the peak data slicer circuit for fast output of valid data.

3.4.4 Output Comparator

The output comparator or data slicer decides whether the incoming signal is a digital LOW or HIGH by using the reference voltage at SLC (pin 32). If the internal voltage is larger than the reference then the output is HIGH and vice versa. Nevertheless, the polarity of the output comparator can be inverted. The driving capability of the comparator output is $\pm 2 \mathrm{~mA}$ and in standby mode the tri-state output is at high impedance.
Pin DTAO must not be connected by a low impedance to a fixed voltage supply or a stronger driver output! We recommend using a series resistance of $10 \mathrm{k} \Omega$ to connect DTAO.

3.5 Frequency Acceptance Range

The frequency acceptance range is defined as the bandwidth where the input sensitivity can be degraded by 3 dB at a maximum, compared to the sensitivity at the center frequency of the channel.
Typically, the frequency acceptance range of the MLX71122 is about 180 kHz , see Fig. 16. The frequency acceptance range is mainly depending on the frequency deviation, and slightly on the modulation frequency. The larger the frequency deviation the smaller the acceptance range.

Fig. 16: Measured sensitivity characteristic ($\mathrm{BER}=3 \cdot 10^{-3}, 4 \mathrm{kbps}, \Delta \mathrm{f}= \pm 20 \mathrm{kHz}$)

3.6 Biasing System

The biasing system needs an external 30 k ' resistor that is connected between RBIAS (pin 10) and the PCB ground. The band-gap voltage at RBIAS causes a reference current flow of about $42 \mu \mathrm{~A}$ through this reference current resistor. The accuracy of the external resistor should be within $\pm 2 \%$. To minimize the temperature dependency it is recommended to use a metal film resistor.

3.7 Operating Modes

The MLX71122 has four operating modes having an impact on the receiver's current consumption. The OPMODE bits in register R0 (see 4.1.1) determine the operating mode. Selections are:

- 00 - Shutdown all blocks deactivated, only SPI active (default)
- 01-Receive receiving data from LNAI at selected frequency
- $10-\mathrm{RO}$ and bias only only biasing system and reference oscillator are working
- 11 - Synthesizer only only biasing system, reference oscillator and PLL are working

The first operating mode consumes virtually no current. The circuit is dead except of the SPI that can listen to commands. In Receive mode all necessary blocks are turned on in order to receive data at the programmed frequency.
The last two operating modes can be used to accelerate the start-up time of the circuit after periods of silence. With RO and bias only, the start-up time of the reference oscillator (RO) can be circumvented. RO and biasing consume not as much current as the whole receiver. With Synthesizer only the full PLL is already working and locked. Current consuming blocks as the LNA, the IF-filter and the FSK-demodulator are turned off in this state. The last mode is useful if the receiver has to listen frequently.

3.8 Multi Functional Output

The Multi Functional Output (pin 23) can be used to read out the control register settings or to make other internal signals available at this pin. The output is controlled by the bits MFO in register R3 (see 4.1.4). The most important selections are:

- 0000 - Z-State
- 0001 - SPI-out
- 0010 - Logic-0
- 0011 - Logic-1
- 0100 - RO-out
- 0101 - IF-out
- 1000 - LD-out
- 1011 - CCO-out

MFO pin is in high impedance mode
MFO pin is digital serial output for data of registers (default in SPI-mode)
MFO pin is pulled to ground
MFO pin is pulled to VCC
MFO pin is buffered, analogue output of RO frequency (default in ABC-mode)
MFO pin is buffered, analogue output of IF2 signal after the IF-filter
MFO pin represents lock state of PLL
MFO pin represents CCO output

Z-State, Logic-0 and Logic-1 can be used to provide digital control signals to other circuits on the PCB. In state RO-out a 10 MHz clock frequency is available at MFO, e.g. for driving a microcontroller. At IF-out pin MFO provides the IFF output, amplified by a factor of 5 (unloaded). In this case the output resistance is about 610Ω. The IF-out mode can be used for checking the IFF characteristics or for further signal processing, e.g. to add an external limiting amplifier and demodulator. With the LD-out setting the state of the PLL can be read out. All other selections are for test purposes. The CCO-out option can be used to check the ratio between the internal CCO and the IF filter frequency. MLX71122

3.9 SPI Description

3.9.1 General

Serial programming interface (SPI) mode can be activated by choosing SPISEL $=1$ (e.g. at positive supply voltage V_{CC}). In this mode, the input pins 17, 18 and 19 are used as a 3 -wire unidirectional serial bus interface (SDEN, SDTA, SCLK). The internal latches contain all user programmable variables including counter settings, mode bits etc.

In addition the MFO pin can be programmed as an output (see section 4.1.4) in order to read data from the internal latches and it can be used as an output for different test modes as well.

At each rising edge of the SCLK signal, the logic value at the SDTA terminal is written into a shift register. The programming information is taken over into internal latches with the rising edge of SDEN. Additional leading bits are ignored, only the last bits are serially clocked into the shift register. A normal write operation shifts 16 bits into the SPI, a normal read operation shifts 4 bits into the SPI and reads additional 12 bits from the MFO pin. If less than 12 data bits are shifted into SDTA during the write operation then the control register may contain invalid information.

In general a control word has the following format. Bit 0 is the Read/Write bit that determines whether it is a read $(R / W=1)$ or a write ($R / W=0$) sequence. The R / W bit is preceding the latch address and the corresponding data bits.

Control Word Format															
MSB											LSB	MSB		LSB	Bit 0
Data												Latch Address			Mode
D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	A2	A2	A0	R/W

There are two control word formats for read and for write operation. Data bits are only needed in write mode. Read operations require only a latch address and a R/W bit.

Due to the static CMOS design, the serial interface consumes virtually no current. The SPI is a fully separate building block and can therefore be programmed in every operational mode.

3.9.2 Read / Write Sequences

Fig. 17 Typical write sequence diagram

Fig. 18 Typical read sequence diagram

3.9.3 Serial Programming Interface Timing

Fig. 19 SPI timing diagram

4 Register Description

The following tables are to describe the functionality of the registers.
Sec. 4.1 provides a register overview with all the control words R0 to R7. The subsequent sections. 4.1.1 to 4.1.8 show the content of the control words in more detail.

Programming the registers requires SPI mode (SPISEL $=1$). Default settings are for ABC mode.

4.1 Register Overview

Note: \quad * depends on bit 11 in R4, $0=$ RSSIL, $1=$ LD

MLX71122
27 to 930 MHz FSK/FM/ASK Receiver

4.1.1 Control Word RO

Name	Bits	Description			
OPMODE	[1:0]	operation mode			
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	shutdown receive mode reference oscillator \& BIAS only synthesizer only		\#default
LNAGAIN	[3:2]	LNA gain			
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	lowest gain low gain high gain highest gain	$\begin{aligned} & \text { (default - 20dB) } \\ & \text { (default - } 6 \mathrm{~dB} \text {) } \\ & \text { (default -2dB) } \\ & \text { (default - 0dB) } \end{aligned}$	\#default
			gain values are relative	gain at default	
MIX1GAIN	[4]	$1^{\text {st }}$ Mixer gain			
		$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	high gain low gain	(14dB) (0dB)	\#default
MIX2GAIN	[5]	$2^{\text {nd }}$ Mixer gain			
		$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	high gain low gain	$\begin{aligned} & (9 \mathrm{~dB}) \\ & (-2 \mathrm{~dB}) \end{aligned}$	\#default
IFFGAIN	[7:6]	intermediate frequency filter gain			
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	lowest gain low gain high gain highest gain	$\begin{aligned} & (-14 d B) \\ & (-6 d B) \\ & (0 d B) \\ & (+6 d B) \\ & \hline \end{aligned}$	\#default
DEMGAIN	[8]	demodulator gain			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	low gain high gain	$\begin{aligned} & (\sim 12 \mathrm{mV} / \mathrm{kHz}) \\ & (\sim 14.5 \mathrm{mV} / \mathrm{kHz}) \end{aligned}$	\#default
SSBSEL	[9]	single side band selection			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	upper side band lower side band	LO2 low-side inj. (IF1 = LO2 + IF2) LO2 high-side inj. (IF1 = LO2 - IF2)	\#default
			Internal IF2 $=2 \mathrm{MHz}$		
SLCSEL	[10]	slicer mode select			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	averaging Data S peak detector Da	cer mode Slicer mode	\#default
DTAPOL	[11]	data output polarity OA2			
		0	inverted		\#default
			'1' for space at ASK or	in at FSK, '0' for mark at ASK or $\mathrm{f}_{\text {max }}$ at FSK	
		1	normal		
			'0' for space at ASK or	${ }_{\text {an }}$ at FSK, '1' for mark at ASK or $\mathrm{f}_{\text {max }}$ at FSK	

4.1.2 Control Word R1

Name	Bits	Description		
		charge pump current setting		
CPCUR	[1:0]	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	$100 \mu \mathrm{~A}$ $400 \mu \mathrm{~A}$ $400 \mu \mathrm{~A}$ static down $400 \mu \mathrm{~A}$ static up	\#default
PFDPOL	[2]	PFD output polarity		
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	negative positive	\#default
LDERR	[3]	lock detector time error		
		$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \mathrm{~ns} \\ & 30 \mathrm{~ns} \end{aligned}$	\#default
LDTIME	[5:4]	lock detection time		
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	$\begin{array}{r} 2 / f_{\mathrm{R}} \\ 4 / f_{\mathrm{R}} \\ 8 / f_{\mathrm{R}} \\ 16 / f_{\mathrm{R}} \end{array}$	\#default
		minimum time span before lock in f_{R} is the reference oscillator frequency $f_{R O}$ divided by R, see section 4.1.5 (R4)		
RSSIGAIN	[6]	sensitivity of RSSI voltage		
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	low gain high gain $(\sim 39 \mathrm{mV} / \mathrm{dB})$ $(\sim 51 \mathrm{mV} / \mathrm{dB})$	\#default
VCORANGE	[7]	VCO range		
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	3 V supply 5 V supply	\#default
		VCO range setting for different VCCs.		
VCOCUR	[8]	VCO core current		
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 450 \mu \mathrm{~A} \\ & 520 \mu \mathrm{~A} \end{aligned}$	\#default
VCOBUF	[9]	VCO buffer current		
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$900 \mu \mathrm{~A}$ $1040 \mu \mathrm{~A}$	\#default
PRESCUR	[10]	prescaler 32/33 reference current		
		$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 20 \mu \mathrm{~A} \\ & 30 \mu \mathrm{~A} \end{aligned}$	\#default
			$30 \mu \mathrm{~A}$ may be used for $\mathrm{f}_{\text {RF }}=868 / 915 \mathrm{MHz}$	
SHOWLD	[11]	function of LDRSSIL bit		
		$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	RSSIL (RSSI low flag) LD (lock detection flag)	\#default
		select output data of LDRSSIL, see section 4.1.8 (R7)		

4.1.3 Control Word R2

Name	Bits	Description		
A	[4:0]	swallow counter value		
		10100	value is $\mathbf{2 0}$	\#default
		swallow counter range: 0 to 31		
N	[11:5]	program counter value (bits $0-6$)		
		00001111000	\mathbf{N} value is $\mathbf{1 2 0}$	\#default
			N counter range: 3 to 2047	

4.1.4 Control Word R3

N	[3:0]	program counter range (bits 7 -10)			
		00001111000		N value is 120	\#default
		N counter range: 3 to 2047			
LO2DIV	[4]	LO2 divider ratio			
		0	divide by 4 divide by 8		\#default
AGCEN	[5]	AGC enable mode			
		0	disabled enabled		\#default
AGCDEL	[7:6]	AGC delay settings			
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	no delay 3/fiff 15/fiff 31/fiFF		\#default
			$\mathrm{f}_{\text {frF }}$ is the reference oscillator frequency fro divided by RIFF, see section 4.1 .6 (R6)		
MFO	[11:8]			multi fun	\#default
		0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	Z state SPI read-out MFO = 0 $M F O=1$ analog RO output analog IFF output resistor (for test purposes) resistor (for test purposes) lock detect output N divider output (for test purposes) R divider output (for test purposes) CCO output (for test purposes) prescaler MC bit output with SCLK as clock (for test) N divider output with SCLK as clock (for test) R divider output with SCLK as clock (for test) RIFF output with SCLK as clock (for test)		

Microelectronic Integrated Systems

4.1.5 Control Word R4

Name	Bits	Description			
R	[10:0]	reference divider range			
		00001001011		value is 75	\#default
		R counter range: 3 to 2047			
AGCMODE	[11]	AGC delay mode			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	gain de gain de	rease and in rease withou	\#default
			selects A	C delay mode in c	(R3)

4.1.6 Control Word R5

4.1.7 Control Word R6

Name	Bits	Description			
IFFPRES	[7:0]	IFF preset value			
		01011011		value is 91	\#default
		IFF DAC preset at start of automatic tuning			
IFFHLT	[8]	IFF halt			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	auto tuning running auto tuning halted		\#default
		suspends IFF automatic tuning			
IFFTUNE	[9]	IFF tuning			
		0	disable and load DAC with IFFPRES enable		\#default
ROCUR	[11:10]	reference Oscillator core current			
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	$\begin{array}{\|c} 85 \mu \mathrm{~A} \\ 170 \mu \mathrm{~A} \\ 270 \mu \mathrm{~A} \\ 355 \mu \mathrm{~A} \\ \hline \end{array}$		\#default

4.1.8 Control Word R7 (Read-only Register)

Name	Bits		Description
IFFVAL	[7:0]	IFF adjustment value	
			see also IFFPRES in section 4.1.7 (R6)
IFFSTATE	IFF automatic tuning state		
	[9:8]	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	filter tuned or auto-tuning disabled tuning up the filter frequency tuning down the filter frequency master oscillator of filter does not work
LDRSSIL	[10]	lock detector or RSSI low flag	
		0	PLL not locked or RSSI value in lower region PLL locked or RSSI value above lower region
		depends on SHOWLD in section 4.1.2 (R1)	
RSSIH	[11]	RSSI high flag	
		$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	RSSI value below upper region RSSI value in upper region

5 Technical Data

5.1 Absolute Maximum Ratings

Operation beyond absolute maximum ratings may cause permanent damage of the device.

Parameter	Symbol	Condition / Note	Min	Max	Unit
Supply voltage	V_{CC}		0	7.0	V
Input voltage	V_{IN}		-0.3	$\mathrm{~V}_{\mathrm{Cc}}+0.3$	V
Input RF level	$\mathrm{P}_{\mathrm{iRF}}$	$@$ LNA input		10	dBm
Storage temperature	$\mathrm{T}_{\mathrm{STG}}$		-55	+125	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{J}			+150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\mathrm{R}_{\mathrm{thJA}}$			60	$\mathrm{~K} / \mathrm{W}$
Power dissipation	$\mathrm{P}_{\text {diss }}$			0.1	W
Electrostatic discharge	$\mathrm{V}_{\mathrm{ESD} 1}$	human body model, 1)	-1.0	+1.0	kV
	$\mathrm{V}_{\mathrm{ESD} 2}$	human body model, 2)	-0.75	+0.75	

1) all pins except LNAO
2) pin LNAO

5.2 Normal Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V_{CC}		3.0	5.5	V
Operating temperature	T_{A}		-40	+110	${ }^{\circ} \mathrm{C}$
Input low voltage (CMOS)	V_{IL}	ENRX, SEL pins, A/SCLK $\mathrm{B} / \mathrm{SDTA}, \mathrm{C} / S D E N$		$0.3 \cdot \mathrm{~V}_{\mathrm{CC}}$	V
Input high voltage (CMOS)	V_{IH}	ENRX, SEL pins, A/SCLK $\mathrm{B} / S D T A, ~ C / S D E N ~$	$0.7 \cdot \mathrm{~V}_{\mathrm{CC}}$		V
Input frequency range	f_{RF}	$3)$	27	930	MHz
IF1 range	$\mathrm{f}_{\mathrm{IF} 1}$	$4)$	6	190	MHz
IF2	$\mathrm{f}_{\mathrm{IF} 2}$			2	MHz
XOSC frequency	$\mathrm{f}_{\text {ref }}$	set by the crystal		10	MHz
VCO frequency	f_{LO}	$5)$	33	750	MHz
Frequency offset of carrier	$\mathrm{f}_{\mathrm{CAR}}$		-100	100	kHz
Frequency deviation	Δ_{f}		± 10	± 50	kHz
FSK data rate	$\mathrm{R}_{\mathrm{FSK}}$	NRZ		100	kbps
ASK data rate	$\mathrm{R}_{\mathrm{ASK}}$	NRZ		100	kbps
FM bandwidth	f_{m}			15	kHz

3) production tested down to $300 \mathrm{MHz}, 27 \mathrm{MHz}$ proven by application at 5 V supply and room temperature
4) production tested down to $80 \mathrm{MHz}, 6 \mathrm{MHz}$ proven by application at 5 V supply and room temperature
5) production tested down to $400 \mathrm{MHz}, 33 \mathrm{MHz}$ proven by application at 5 V supply and room temperature

5.3 Crystal Parameters

Parameter	Symbol	Condition	Min	Max	Unit
Crystal frequency	f_{0}	fundamental mode, AT		10	MHz
Load capacitance	C_{L}		10	15	pF
Static capacitance	C_{0}			7	pF
Series resistance	R_{1}			70	Ω

5.4 Serial Programming Interface (SPI)

Parameter	Symbol	Condition	Min	Max	Unit
Input High Voltage	V_{IH}		$\mathrm{V}_{\mathrm{cc}}-0.4$		V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			0.4	V
SLCK frequency	$\mathrm{f}_{\text {SLCK }}$			10	MHz
SLCK period	$\mathrm{t}_{\text {sLCK }}$		100		ns
SDTA to SCLK set up time	$\mathrm{tcs}^{\text {c }}$		20		ns
SCLK to SDTA hold time	t_{CH}		20		ns
SCLK pulse width low	tcw		50		ns
SCLK pulse width high	$\mathrm{t}_{\text {cw }}$		50		ns
SCLK to SDEN set up time	$\mathrm{t}_{\text {ES }}$		30		ns
SDEN pulse width	$\mathrm{t}_{\text {EW }}$		50		ns
SDEN to SCLK hold time	I		20		ns
Rising Edge of SLCK	t_{CR}			0.1 tsLck	ns
Falling Edge of SLCK	t_{CF}			0.1 tsLCk	ns
SDEN to MFO data set-up time	$\mathrm{t}_{\text {DES }}$			70	ns
SCLK to MFO data set-up time	$\mathrm{t}_{\text {DSo }}$			50	ns
MFO max. pin load capacitance	CLMFO			20	pF

MLX71122

Microelectronic Integrated Systems

5.5 DC Characteristics

- all parameters under normal operating conditions and default settings, unless otherwise stated
- typical values at $T_{A}=23^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$
- all parameters based on test circuits as shown in Fig. 20 to Fig. 22

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Operating Currents						
Shutdown current	$\mathrm{I}_{\text {SBY }}$	OPMODE=00 and ENRX=0		50	500	nA
Supply current, FSK	$\mathrm{I}_{\text {FSK }}$	OPMODE=01 or ENRX=1	10	12	15	mA
Supply current, ASK	$\mathrm{I}_{\text {ASK }}$	OPMODE=01 or ENRX=1	9.5	11.5	14.5	mA
Supply current, RO only	I_{RO}	OPMODE=10 and ENRX=0	0.4	0.8	1.2	mA
Supply current, Synthesizer only	$\mathrm{I}_{\text {SYN }}$	OPMODE=11 and ENRX=0	3	4	5	mA
Digital Pin Characteristics						
Input low voltage CMOS, ENRX	$\mathrm{V}_{\text {ILEN }}$	ENRX pin	-0.3		$0.3 \cdot \mathrm{~V}_{\text {cc }}$	V
Input high voltage CMOS, ENRX	$\mathrm{V}_{\text {IHEN }}$	ENRX pin	$0.7 \cdot \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{cc}}+0.3$	V
Pull down current ENRX pin	IPden	ENRX=1	1.5	5	8	$\mu \mathrm{A}$
Low level input current ENRX pin	IINLEN	ENRX=0			0.05	$\mu \mathrm{A}$
Input low voltage CMOS	VIL	Pins MODSEL, SPISEL, A/SCLK, B/SDTA, C/SDEN	-0.3		$0.3 \cdot \mathrm{~V}_{\text {cc }}$	V
Input high voltage CMOS	V_{IH}	Pins MODSEL, SPISEL, A/SCLK, B/SDTA, C/SDEN	$0.7 \cdot \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Low level input leakage current		Pins MODSEL, SPISEL, A/SCLK, B/SDTA, C/SDEN	-2			$\mu \mathrm{A}$
High level input leakage current	I_{HL}	Pins MODSEL, SPISEL, A/SCLK, B/SDTA, C/SDEN			2	$\mu \mathrm{A}$
Analog Pin Characteristics						
OA1 input offset voltage	$\mathrm{V}_{\text {OFFOA1 }}$	OA1	-50		50	mV
OA2 input offset voltage	$\mathrm{V}_{\text {OFFOA2 }}$	OA2	-20		20	mV
OA2 current sinking capability	$\mathrm{l}_{\text {OA2SINK }}$	OA2 (DTAO pin)			2	mA
OA2 current sourcing capability	$\mathrm{l}_{\text {OA2SRC }}$	OA2 (DTAO pin)			2	mA
Peak detector P pull-up current	IPDPPU	PDP		235		$\mu \mathrm{A}$
Peak detector N pull-down current	$\mathrm{I}_{\text {PDNPD }}$	PDN		270		$\mu \mathrm{A}$

5.6 AC System Characteristics

- all parameters under normal operating conditions and default settings, unless otherwise stated
- typical values at $\mathrm{T}_{\mathrm{A}}=23^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{RF}$ at 433.92 MHz
- all parameters based on test circuits as shown in Fig. 20 to Fig. 22

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Receive Characteristics						
Input sensitivity - FSK (standard)	$\mathrm{P}_{\text {min, }}$ FSK	$\Delta \mathrm{f}= \pm 20 \mathrm{kHz},$ 4kbps NRZ, BER $\leq 3 \cdot 10^{-3}$		-107		dBm
Input sensitivity - FSK (with carrier offset)	$P_{\text {min }, ~ F S K},$ offs	$\Delta \mathrm{f}= \pm 20 \mathrm{kHz},$ 4kbps NRZ, $\pm 90 \mathrm{kHz}$ carrier offset $\mathrm{BER} \leq 3 \cdot 10^{-3}$		-104		dBm
Input sensitivity - ASK	$\mathrm{P}_{\text {min, ASK }}$	100% on-off ratio 4kbps NRZ, BER $\leq 3 \cdot 10^{-3}$		-112		dBm
Maximum input signal - FSK/FM	$\mathrm{P}_{\text {max, FSK }}$	BER $\leq 3 \cdot 10^{-3}$		0		dBm
Maximum input signal - ASK	$\mathrm{P}_{\text {max, ASK }}$	BER $\leq 3 \cdot 10^{-3}$		-10		dBm
Spurious emission	$\mathrm{P}_{\text {spur }}$				-54	dBm
Image rejection of MIX2	$\Delta \mathrm{P}_{\text {imag }}$			32		dB
IF Filter Parameters						
Center frequency	f_{IF}	static with tuning on	1.87	2.00	2.04	MHz
3dB bandwidth	$\mathrm{B}_{3 \mathrm{~dB}}$		180	220	260	kHz
40dB bandwidth	$\mathrm{B}_{40 \mathrm{~dB}}$			1.6		MHz
RSSI Characteristics						
Low voltage	$\mathrm{V}_{\text {LRSSI }}$	high gain			0.75	V
High voltage	$\mathrm{V}_{\text {HRSSI }}$	high gain	2.65			V
RSSI dynamic range	$\mathrm{DR}_{\text {RSSI }}$			50		dB
RSSI sensitivity, low gain	$\mathrm{S}_{\text {RSSIL }}$	low gain		39		$\mathrm{mV} / \mathrm{dB}$
RSSI sensitivity, high gain	$\mathrm{S}_{\text {RSSIH }}$	high gain		51		$\mathrm{mV} / \mathrm{dB}$

FSK Demodulator

Demodulator gain, low	$\mathrm{DG}_{\text {LOW }}$			12		$\mathrm{mV} /$
Demodulator gain, high	$\mathrm{DGGHAH}^{\mathrm{HIGH}}$			14.5		kHz
Maximum data rate	$\mathrm{B}_{\text {DEM }}$	NRZ			100	kbps
Frequency acceptance range	$\mathrm{BW}_{\text {DEMOD }}$	$\Delta \mathrm{f}= \pm 20 \mathrm{kHz}$	150			kHz

Start-up Parameters

Crystal start-up time	$\mathrm{T}_{\mathrm{XTL}}$			0.9		ms
Receiver start-up time	T_{RX}	depends on data slicer; valid data at output			$\mathrm{T}_{\mathrm{XTL}}+$ $200 \mathrm{k} \cdot \mathrm{C} 10$	
PLL lock time	$\mathrm{T}_{\mathrm{PLL}}$	from OPMODE=10		0.4		ms

PLL Parameters

VCO gain @ 433MHz	$\mathrm{K}_{\mathrm{Vco}}$	for VCORANGE $=1$		85		$\mathrm{MHz} / \mathrm{V}$
VCO gain @ 868 MHz	$\mathrm{K}_{\mathrm{Vco}}$	for VCORANGE $=1$		108		$\mathrm{MHz} / \mathrm{V}$
Charge pump current	I_{CP}	depends on CPCUR	100		400	$\mu \mathrm{~A}$

6 Test Circuits

6.1 Standard FSK \& ASK Reception in 8-Channel Preconfigured (ABC) Mode

6.1.1 Averaging Data Slicer for Bi-Phase Codes (e.g. Manchester)

Fig. 20: Test circuit for FSK \& ASK reception

6.2 Standard FSK \& ASK Reception in SPI Mode

6.2.1 Averaging Data Slicer for Bi-Phase Codes (e.g. Manchester)

Fig. 21: Test circuit for FSK \& ASK reception

6.2.2 Peak Detector Data Slicer Configured for NRZ Codes

Fig. 22: Test circuit for FSK \& ASK reception

6.3 Test Circuit Component List

Below table shows components for all test circuits of Figures 20 to 22.

Part	Size	$\begin{gathered} \text { Value @ } \\ 27 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Value @ } \\ 315 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Value @ } \\ 433.92 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Value @ } \\ 868.3 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Value @ } \\ 915 \\ \text { MHz } \end{gathered}$	Tol.	Description
C1	0603	150 pF	3.9 pF	4.7 pF	3.3 pF	1.5 pF	$\pm 5 \%$	matching capacitor
C2	0603	39 pF	1.5 pF	1.5 pF	1.5 pF	1.5 pF	$\pm 5 \%$	matching capacitor
C3	0603	1 nF	100 pF	100 pF	100 pF	100 pF	$\pm 5 \%$	LNA input filtering capacitor
C4	0603	22 pF	4.7 pF	3.3 pF	2.7 pF	2.2 pF	$\pm 5 \%$	LNA output tank capacitor
C5	0603	100 pF	$\pm 5 \%$	MIX1 negative input matching capacitor				
C6	0603	100 pF	$\pm 5 \%$	MIX1 negative input matching capacitor				
C7	0603	1 nF	$\pm 10 \%$	RSSI output low pass capacitor, for data rate of 4 kbps NRZ				
C8	0603	220 pF	$\pm 10 \%$	data low-pass filter capacitor, for data rate of 4 kbps NRZ				
C9	0603	150 pF	$\pm 10 \%$	data low-pass filter capacitor, for data rate of 4 kbps NRZ				
C10	0603	33 nF	$\pm 10 \%$	data slicer capacitor, for data rate of 4 kbps NRZ				
		not required in Fig. 22						
C11	0603	33 nF	$\pm 10 \%$	PKDET positive filtering capacitor, for data rate of 4 kbps NRZ				
		not required in Figs. 20 and 21						
C12	0603	33 nF	$\pm 10 \%$	PKDET negative filtering capacitor, for data rate of 4 kbps NRZ				
		not required in Figs. 20 and 21						
CB0	1210	220 nF	$\pm 10 \%$	decoupling capacitor, low-noise power supply recommended				
CB1	0603	10 nF	470 pF	470 pF	470 pF	470 pF	$\pm 10 \%$	decoupling capacitor
CB2	0603	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{FF}$	$10 \mu \mathrm{~F}$	$\pm 10 \%$	decoupling capacitor
CB3	0603	33 nF	$\pm 10 \%$	decoupling capacitor				
CF1	0603	$1 \mu \mathrm{~F}$	2.2 nF	2.2 nF	2.2 nF	2.2 nF	$\pm 5 \%$	loop filter capacitor
CF2	0603	100 nF	220 pF	220 pF	220 pF	220 pF	$\pm 5 \%$	loop filter capacitor
CX	0603	27 pF	$\pm 5 \%$	crystal series capacitor				
RB0	0603	10Ω	$\pm 5 \%$	protection resistor				
RB1	0603	270Ω	$\pm 5 \%$	protection resistor				
RF	0603	$1 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega$	$47 \mathrm{k} \Omega$	$47 \mathrm{k} \Omega$	$\pm 5 \%$	loop filter resistor
RBS	0603	$30 \mathrm{k} \Omega$	$\pm 2 \%$	reference bias resistor				
LO	0603	$3.3 \mu \mathrm{H}$	33 nH	15 nH	8.2 nH	8.2 nH	$\pm 5 \%$	VCO tank inductor
L1	0603	$1 \mu \mathrm{H}$	68 nH	47 nH	22 nH	15 nH	$\pm 5 \%$	matching inductor
L3	0603	$1.5 \mu \mathrm{H}$	33 nH	22 nH	5.6 nH	5.6 nH	$\pm 5 \%$	LNA output tank inductor
XTAL	$\begin{aligned} & \hline \text { SMD } \\ & 5 \times 3.2 \end{aligned}$			10.0000 ppm cal., \pm	Hz pm temp.			fundamental-mode crystal

Remarks:
$\left.\begin{array}{||c|c|c|c|c|c|c|c|}\hline & \begin{array}{c}\mathbf{2 7} \\ \mathbf{M H z}\end{array} & \begin{array}{c}\mathbf{3 1 5} \\ \mathbf{M H z}\end{array} & \begin{array}{c}\mathbf{4 3 3 . 9 2} \\ \mathbf{M H z}\end{array} & \begin{array}{c}\mathbf{8 6 8 . 3} \\ \mathbf{M H z}\end{array} & \begin{array}{c}\mathbf{9 1 5} \\ \mathbf{M H z}\end{array} & & \text { Description }\end{array}\right]$

7 Package Description

The device MLX71122 is RoHS compliant.

Fig. 23: 32L QFN 5x5 Quad

all Dimension in mm										
	D	E	D2	E2	A	A1	A3	L	e	b
$\min _{\max }$	$\begin{aligned} & 4.75 \\ & 5.25 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 5.25 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.25 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.25 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.00 \end{aligned}$	$\begin{gathered} 0 \\ 0.05 \end{gathered}$	0.20	$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	0.50	$\begin{aligned} & 0.18 \\ & 0.30 \end{aligned}$
all Dimension in inch										
min max	$\begin{aligned} & \hline 0.187 \\ & 0.207 \end{aligned}$	$\begin{aligned} & \hline 0.187 \\ & 0.207 \end{aligned}$	0.118 0.128	0.118 0.128	$\begin{aligned} & \hline 0.0315 \\ & 0.0393 \end{aligned}$	$\begin{gathered} 0 \\ 0.002 \end{gathered}$	0.0079	$\begin{aligned} & 0.0118 \\ & 0.0197 \end{aligned}$	0.0197	$\begin{aligned} & 0.0071 \\ & 0.0118 \end{aligned}$

7.1 Soldering Information

- The device MLX71122 is qualified for MSL3 with soldering peak temperature 260 deg C according to JEDEC J-STD-20

8 Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (즈urface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

- EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

- EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21

Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.aspx

9 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

Notes

10 Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.
© 2012 Melexis NV. All rights reserved.

For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:

Europe, Africa, Asia:
Phone: +32 13670495
E-mail: sales_europe@melexis.com

America:
Phone: +1 2483065400
E-mail: sales_usa@melexis.com

ISO/TS 16949 and ISO14001 Certified

Стандарт Злектрон Связь

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:
Телефон: +7 8126271435
Электронная почта: sales@st-electron.ru
Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера H, помещение 100-Н Офис 331

