
Micro OLED Breakout Hookup Guide

Introduction
Want to add a little graphic pizzazz to your Arduino project? Do you need to
display diagnostic information without resorting to serial output? Or maybe
you want to learn a little game theory while creating a fun, Arduino-based
video game. These are just a handful of example applications for the Micro
OLED Breakout.

The Micro OLED Breakout Board breaks out a small monochrome, blue-on-
black OLED. It’s 64 pixels wide and 48 pixels tall, measuring 0.66" across.
It’s micro, but it still packs a punch – the OLED display is crisp, and you can
fit a deceivingly large amount of graphics on there. Most important of all,
though, is the Micro OLED is easy to control over either an SPI or I C
interface.

Covered In This Tutorial

In this tutorial we’ll give you a brief introduction to the OLED and the
breakout, then we’ll jump into example hardware hookups and code. The
tutorial is split into the following sections:

• Breakout Board Overview – To begin, we’ll go over each of the pins
on the breakout board and their function. This section also overviews
the jumpers on the backside of the Breakout.

• Hardware Assembly – Soldering tips and other Micro OLED Breakout
assembly tricks.

• Hardware Hookup – In this section we’ll show you how to hook an
Arduino up to the display via either SPI or I C.

2

2

Page 1 of 12

• Arduino Library Download, Install, and Test – Download and install
the Arduino library, then upload an example to test everything out.

• Using the Arduino Library – A quick examination of the Micro OLED
Arduino library’s family of function calls.

Materials Used

In addition to the display, you’ll also need a few components and tools to
follow along with this tutorial. Here is what we used to get the display up-
and-running:

There are many ways to complete the hookup, though. In general, you’ll
need:

• Arduino or other microcontroller – You’ll need something to
control the display. Optimally you’ll want something that has a 3.3V
operating voltage. We’ll be using a 3.3V Arduino Pro, the 3.3V
Arduino Pro Mini would be another good option.

• Level shifting – If you’re using a 5V Arduino, like the Uno or
RedBoard, you’ll need to add some level shifting. Something like the
bi-directional logic level converter should do the trick.

• Connectors – Some means for interfacing the breakout with your
microcontroller. Male headers are perfect if you’re using a
breadboard. Or maybe all you need is some wire.

• Soldering tools – After you’ve picked a connector, you’ll need to
solder it to the breakout board. A simple iron and some solder should
be all you need.

Recommended Reading

Before getting started with the Micro OLED Breakout, there are a few
concepts you should be familiar with. Consider reading some of the tutorials
below, before continuing on with this one.

Breadboard - Self-Adhesive
(White)
 PRT-12002

 14

Break Away Headers -
Straight
 PRT-00116

 17

Jumper Wires Standard 7"
M/M Pack of 30
 PRT-11026

 17

Arduino Pro 328 -
3.3V/8MHz
 DEV-10914

Page 2 of 12

• What is an Arduino? – We’ll use an Arduino to send commands and
display data to the OLED.

• Serial Peripheral Interface (SPI) – SPI is the preferred method of
communication with the display.

• I C – Alternatively, I C can be used to control the display. It uses less
wires, but is quite a bit slower.

• How to Use a Breadboard – The breadboard ties the Arduino to the
OLED breakout.

Breakout Board Overview

Pin Descriptions

In total, the Micro OLED Breakout provides access to 16 of the OLED’s
pins. Fortunately, though, you’ll only need about half of them to make the
display work.

The top row of pins (in the image above) breaks out everything you’d need
to interface with the OLED over an SPI or I2C interface. Those pins are:

Pin
Label

SPI Function I C Function Notes

GND Ground Ground 0V

3V3
(VDD)

Power Power
Should be a regulated 3.3V

supply.

D1
(SDI)

MOSI SDA Serial data in

D0
(SCK)

SCK SCL SPI and I C clock

D2
(SDO)

MISO —
Can be unused in SPI mode.

No function for I C.

D/C Data/Command
I C address

selection

Digital pin to signal if incoming
byte is a command or screen

data.

RST Reset Reset Active-low screen reset.

CS CS — SPI chip select (active-low)

The pins on the bottom are mostly only used if you need to control the
display over a parallel interface. D3-D7 are the last 5 bits of the parallel
data bus. E/RD acts as either an enable/disable pin, or a read/write control,
depending on the parallel bus configuration. The RW/WR pin is either used
as a read/write control or a write latch.

2 2

2

2

2

2

Page 3 of 12

The VB pin allows you to individually power the VBAT line of the display.
The supply for VBAT should be between 3.3V and 4.2V (LiPo battery-ish
supply). If you’d like power this line individually, pay extra-special attention
to the VD/VB jumper section below.

Those bottom eight pins were simply broken out for complete-ness. If
you’re controlling the display via either SPI or I C, you can safely ignore
them.

Setting the Jumpers

With the board flipped over, you’ll notice there are five jumpers. The
majority of these jumpers are used to switch between SPI and I C mode.
As the board ships, these jumpers are set to configure the display in SPI
mode.

Here’s an overview of each jumper, moving from left-to-right, top-to-bottom
in the picture above:

• D1/D2 -- This jumper can be used to short D1 to D2. If you want to
use SPI, leave this jumper open. If you're using I C, short the jumper.
By default this jumper is open.

• D/C -- This jumper can be used to short D/C to either 3.3V (1) or 0V
(0). In I C mode, the D/C pin sets the 7-bit address of the display. In
SPI mode this jumper should be left open, as the D/C pin needs to be
toggled to determine if an incoming byte is data or command.

• BS2 and BS1 -- These pins on the OLED determine which interface
you're using to control the OLED. With the two signals, there are four
possible combinations:

BS2 BS1 Interface

0 0 SPI

0 1 I C

1 0 8-bit Parallel (6800)

1 1 8-bit Parallel (8080)

By default, both of these jumpers are set to 0, which puts the display
in SPI mode. If you want to change it to I C mode, clear the BS1
jumper and set it to 1.

• VD/VB -- This jumper shorts the digital power supply (VDD) to the
battery power supply (VBAT). Because both of these supplies can be
powered at 3.3V, an easy one-supply solution is to short them
together and provide them a single supply. If you need to power the
digital supply at something lower, like 1.8V, you may need to cut this
jumper and provide two supplies.

That brief overview should cover the 99% use case. Consult the schematic
and the notes therein if you have any questions about jumpers or pins.

Hardware Assembly
Before you solder anything to the Micro OLED Breakout, take some time to
think about how you’re going to use it. Are you just prototyping with it?
Sticking it on a breadboard? Maybe all you need to do is solder some
headers on there. Are you enclosing it? Embedding it into a project? In that
case, maybe you’ll want to solder wires to the pins instead.

Also think about how you want the screen to be visible. The board is
designed so you can either fold the display over, or have it flop off the edge
of the board. The screen’s orientation will determine which side of the board
you’ll need to solder to.

2

2

2

2

2

2

Page 4 of 12

Solder on either side of the PCB. If you’re using wire (left) either
configuration will do. If you’re using headers, we recommend soldering as

shown above to the right.

Even if you’re not going to use the extra eight pins, try to solder headers to
them if you can. This will help balance the display if you’re plugging it into a
breadboard. Just take care not to burn the screen’s connector as you solder
these pins – you can gently pull it back while applying the solder.

Carefully solder the pins under the connector, which will help stabilize the
display in your breadboard.

After soldering, you may want to secure the display with some tape –
especially if you’re going with the “fold-over” method. Double-sided foam
tape is perfect for this application.

Page 5 of 12

Fold the display over and it should fit perfectly within the PCB’s outline.

Setting Jumpers for I C Mode

If you’re controlling the display over I C, you’ll need to make a few
modifications to the jumpers:

1. Short D1/D2 – This will combine the data output line and data input
line into one.

2. Set BS1 to 1 – The BS1 jumpers comes defaulted to 0, which does
half the job of setting it to SPI. To set the display to I C, you’ll need to
flip that jumper to 1. Also make sure the BS2 jumper remains set to
0.

3. Set D/C – In I C mode, the D/C pin configures the display’s 7-bit
address. You can set it to either 0 or 1, just keep that value in mind
when you get to the code part of this tutorial.

Once you’re done setting jumpers, the back of the board should look a little
something like this:

Breakout jumpers set for I C mode.

Hardware Hookup
Now that your breakout is all soldered-to and assembled, it’s time to wire it
up. In this section we’ll go over to example hookups, depending on whether
you’d like to use SPI or I C to control the display.

If you’re not sure which interface to use, we recommend going with SPI,
which will give you the fastest transfer rate and screen refresh speed.

2

2

2

2

2

2

Page 6 of 12

Arduino Pro 3.3V via SPI

We’ll be using the Arduino’s hardware SPI pins in order to achieve the
fastest data transfer speed. That means we’ll need to use pins 13, 11, and
10 as the SCLK, MOSI, and CS pins. The other pins – RST and D/C – can
be connected to any available digital pin on the Arduino.

Here’s the example hookup:

Make sure your display is powered at 3.3V and not 5V!

Arduino Pro 3.3V via Using I C

The benefit of I C is the lower pin count – this hookup only requires three
wires, besides power and ground – but you do sacrifice some speed for
fewer wires.

In this case, SDA and SCL must be tied to the Arduino Pro’s pins A4 and
A5 respectively. RST can be tied to any other digital pin, we’re using 9.

While I C affords you a few extra available pins, it is quite a bit slower than
SPI. If you don’t need a fast framerate, though, I C is a great option.

Arduino Library Download, Install, and
Test
Soldering? Check. Wiring? Check. On to the firmware. Let’s make the
display blink!

Download, Install the Arduino Library

To make controlling the OLED as easy as possible, we’ve adapted an
Arduino library for it. Using the library, you can draw anything from pixels to
shapes and even text. To download the library, click the button below, or
grab the latest version from our GitHub repository.

DOWNLOAD THE ARDUINO LIBRARY!

Then install the library in your Arduino sketchbook. If you need any
guidance installing the library, check out our Installing an Arduino Library
tutorial.

Load the Demo Example

2

2

2

2

Page 7 of 12

Next, load up the demo example that’s included with the library. After
installing the library, open Arduino. Then navigate to File > Examples >
SFE_MicroOLED > MicroOLED_Demo.

Make sure your Board and Serial Port are set correctly and upload!

The demo example will show off a lot of what the OLED can do. For more
fun, check out the other examples included with the library.

Using the Arduino Library
Now that you’ve loaded up the example, and proven out your display and
hookup, it’s time to get started writing your own application! Before you get
started, here’s a quick rundown of the SFE_MicroOLED library.

Including, Initializing, and Beginning

At the top of your code, of course, you’ll need to include the
SFE_MicroOLED library. On top of that, you’ll also need to include the SPI
and Wire libraries so the SFE_MicroOLED library has access to those
interfaces.

#include <SPI.h>
#include <Wire.h>
#include <SFE_MicroOLED.h>

After you’ve included the library, you can create a MicroOLED object in the
global variable area of your code. This is where you’ll tell the library
whether you’re using SPI or I C, and which pins are driving the display.2

Page 8 of 12

#define PIN_RESET 9 // Connect RST to pin 9 (req. for SPI and
I2C)
#define PIN_DC 8 // Connect DC to pin 8 (required for SPI)
#define PIN_CS 10 // Connect CS to pin 10 (required for SP
I)
//#define DC_JUMPER 0 // (I2C only) Set to either 0 or 1, matc
hing the value of the DC Jumper

// Declare a MicroOLED object. The parameters include:
// 1 Reset pin: Any digital pin
// 2 D/C pin: Any digital pin (SPI mode only)
// 3 CS pin: Any digital pin (SPI mode only, 10 recommended)
MicroOLED oled(PIN_RESET, PIN_DC, PIN_CS); // Example SPI Decl
aration
//MicroOLED oled(PIN_RESET, DC_JUMPER); // Example I2C Declara
tion

If you’re using SPI to talk to the display, define three parameters to tell the
library which pins you have RST, D/C and CS connected to, respectively. If
you’re using I C, you’ll need two parameters: the reset pin and the value of
the D/C jumper (0 or 1).

In the example above we’ve called our MicroOLED object oled , but you
can call it anything you’d like. You can even create more than one, if you
have more displays connected to your Arduino.

The last step to the OLED setup should occur in the setup() function.
Stick a oled.begin() function in there, which will initialize the display and
update all sorts of behind-the-scenes settings for you.

setup()
{

// Before you can start using the OLED, call begin() to in
it

// all of the pins and configure the OLED.
 oled.begin();
}

Drawing Pixels and Displaying

Let’s begin by drawing the simplest shape out there – a pixel. Drawing
anything requires at least two steps. First you have to tell the screen what
you want to draw, then you have to tell it to draw it.

To draw a pixel, start by calling the pixel(int x, int y) function.

// Draw a pixel in the middle of the screen
oled.pixel(LCDWIDTH/2, LCDHEIGHT/2); // Add a pixel to the dis
play buffer.

Then, after you’ve told the screen what to draw, use the display()
function to execute.

oled.display(); // Draw whatever is in the display buffer.

The display() function re-draws the entire screen – all 3072 pixels. It
takes a relatively long time to execute the command, so try not to do it too
much.

Lines, Rectangles, Circles, Oh My!

Now that we know how to draw pixels, it’ll be easy to draw all sorts of
shapes.

2

Page 9 of 12

To draw a line, you need two sets of x/y coordinates, the line will be drawn
between them. Here’s an example:

int x0 = 7; int y0 = 7; // (x0,y0) = (7, 7)
int x1 = 42; int y1 = 24; // (x1,y1) = (42, 24)
oled.line(x0, y0, x1, y1); // Draw a line from (x0,y0) to (x
1,y1);
oled.display(); // Draw to the screen

Things are a little different if you want to draw a rectangle. In this case, you
give it a x/y coordinate to start at, then a width and a height.

int x0 = 7; int y0 = 5;
int width = 24;
int height = 13;
oled.rect(x0, y0, width, height); // Draw a rectange from (7,
5) to (31,18)
oled.display(); // Draw to the screen

The rectangle will be drawn from (x0, y0) to (x0+width, y0+height).

Want to fill that rectangle? Use the rectFill function instead!

oled.rectFill(7, 5, 35, 5); // Fill a rectangle from (7, 5) to
(42, 10)
oled.display(); // Draw to the screen

Circles require a set of coordinates for the middle, and then a radius.

int radius = 13;
// Draw a 13pixel radius (26pixel diameter)
// circle centered in the middle of the display:
oled.circle(LCDWIDTH/2, LCDHEIGHT/2, radius);

As with the rectangle function, you can also fill the circle with circleFill :

oled.circleFill(42, 20, 7); // Fill a circle, 7 radius, center
ed at (42, 20)
oled.display(); // Draw to the screen

Drawing Text

In addition to basic shapes, you can also draw text with the
SFE_MicroOLED library. There are a few settings to adjust before you get
to texting, though. First, set the font type with setFontType(type) . The
parameter in this function can be either 0, 1, 2, or 3, each size gets
progressively larger.

oled.setFontType(0); // Set the text to small (10 columns, 6
rows worth of characters).
oled.setFontType(1); // Set the text to medium (6 columns, 3
rows worth of characters).
oled.setFontType(2); // Set the text to medium/7segment (5 c
olumns, 3 rows worth of characters).
oled.setFontType(3); // Set the text to large (5 columns, 1 r
ow worth of characters).

Here’s a quick overview of each of the four font types:

Font
Type

Maximum
Columns

Maximum
Rows

Description

0 10 6 Smallest, 5x7-pixel characters.

Page 10 of 12

1 6 3 Medium, 8x16-pixel characters.

2 5 3
7-segment display style
characters, 10x16-pixels each.

3 5 1
Large, 12x48 (the entire screen
height) characters.

Next, after setting the font type, define your text cursor with
setCursor(x, y) . This will define the top-left corner of the first character

you print.

oled.setCursor(0, 0); // Set the text cursor to the upperlef
t of the screen.

Finally, you can use the print(String/int/float) command to print
whatever you want.

oled.print("Hello, world"); // Print a const string
oled.print(analogRead(0)); // Print an integer
oled.print(42.07); // Print a float
oled.display(); // Draw to the screen

That covers the basics of the library, but it can do more. Check out the
library’s readme for a complete overview of the MicroOLED class. There
you’ll find more functions, like invert(boolean) flipVertical(boolean) ,
flipHorizontal(boolean) , and scrollRight(start, stop) .

Resources & Going Further
Here are a few helpful links that might help to answer any questions you
may still have regarding the Micro OLED Breakout:

• Micro OLED Breakout Schematic
• Micro OLED Breakout Eagle Files
• Micro OLED GitHub Repository
• SSD1306 Controller Datasheet

Going Further

Now that you’re well-versed in all things Micro OLED Breakout and its
Arduino library, what are you going to make with it? Need some inspiration,
check out these related tutorials:

OLED Display Hookup Guide
A simple hookup guide to get you
started with the OLED LCD.

Serial Graphic LCD Hookup
Learn how to use the Serial Graphic
LCD.

Page 11 of 12

RGB Panel Hookup Guide
Make bright, colorful displays using
the 32x32 and 32x16 RGB LED
panels. This hookup guide shows
how to hook up these panels and
control them with an Arduino.

Reaction Timer
Demonstrate mental chronometry
with this simple reaction timer!

Page 12 of 12

10/9/2015https://learn.sparkfun.com/tutorials/micro-oled-breakout-hookup-guide?_ga=1.231437407....

Мы молодая и активно развивающаяся компания в области поставок

электронных компонентов. Мы поставляем электронные компоненты

отечественного и импортного производства напрямую от производителей и с

крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем

комплексные и плановые поставки широчайшего спектра электронных

компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную

поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и

предпродажную проверку качества продукции. На все поставляемые продукты

мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на

предприятия военно-промышленного комплекса России , а также работаем в

рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система

менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный

ассортимент и индивидуальный подход к клиентам являются основой для

выстраивания долгосрочного и эффективного сотрудничества с предприятиями

радиоэлектронной промышленности, предприятиями ВПК и научно-

исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331

mailto:sales@st-electron.ru

