Photocouplers GaAlAs Infrared LED & Photo Diode

TLP3906

1. Applications

- Measuring Instruments
- MOSFET Gate Drivers

2. General

The TLP3906 is a photocoupler in the SO6 package that consists of an infrared light emitting diode optically coupled to a photodiode array. The photodiodes are connected in series, making the TLP3906 suitable for MOS gate drive applications.

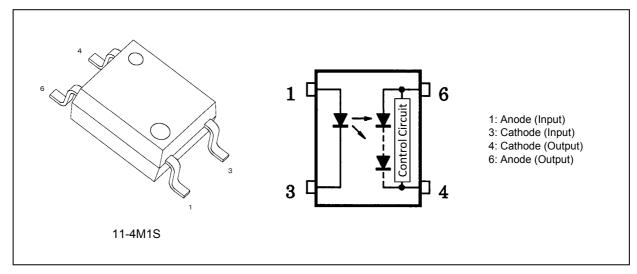
3. Features

- (1) Open voltage: 7 V (min)
- (2) Short current: $12 \mu A (min)$
- (3) Isolation voltage: 3750 Vrms (min)
- (4) Safety standards

UL (approved): UL1577 File No.E67349

cUL (approved): CSA Component Acceptance Service No.5A, File No.E67349

VDE (approval pending): Option (V4) EN60747-5-5 (Note)


Note: When an EN60747-5-5 approved type is needed, please designate the **Option (V4)**.

Rank	I _{SC} Rank Marking	Test Condition	Short-Circuit Current I _{SC} (min)	Unit
C20	С	I _F = 10 mA	20	μA
None	C, Blank	I _F = 10 mA	12	

Table Short-Circuit Current (Note) (Unless otherwise specified, $T_a = 25$ °C)

Note: Specify both the part number and a rank in this format when ordering. Example: TLP3906 (C20) For safety standard certification, however, specify the part number alone. Example: TLP3906 (C20,E(O → TLP3906

4. Packaging and Pin Assignment

Start of commercial production 2014-02 2014-05-07 Rev.1.0

5. Mechanical Parameters

Characteristics	Min	Unit
Creepage distances	5.0	mm
Clearance	5.0	
Internal isolation thickness	0.4	

6. Absolute Maximum Ratings (Note) (Unless otherwise specified, $T_a = 25$ °C)

	Characteristics		Symbol	Note	Rating	Unit
LED	Input forward current		١ _F		30	mA
	Input forward current	(T _a = 125 °C)	1		10	
	Input forward current derating	$(T_a \ge 100 \ ^\circ C)$	$\Delta I_F / \Delta T_a$		-0.8	mA/°C
	Input power dissipation		PD		50	mW
	Input reverse voltage		V _R		3	V
Detector	Output forward current		I _{FD}		50	μA
	Output reverse voltage		V _{RD}		10	V
	Output power dissipation		Po		0.5	mW
Common	Operating temperature		T _{opr}		-40 to 125	°C
	Storage temperature		T _{stg}		-55 to 125	°C
	Lead soldering temperature	(10 s)	T _{sol}		260	°C
	Isolation voltage	AC, 60 s, R.H. \leq 60 %	BVS	(Note 1)	3750	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: This device is considered as a two-terminal device: Pins 1 and 3 are shorted together, and pins 4 and 6 are shorted together.

7. Recommended Operating Conditions (Note)

Characteristics	Symbol	Note	Min	Тур.	Max	Unit
Input forward current	١ _F		_	12	15	mA
Operating temperature	T _{opr}		-25		100	°C

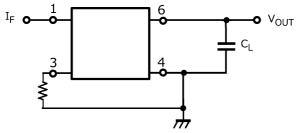
Note: The recommended operating conditions are given as a design guide necessary to obtain the intended performance of the device. Each parameter is an independent value. When creating a system design using this device, the electrical characteristics specified in this datasheet should also be considered.

8. Electrical Characteristics (Unless otherwise specified, T_a = 25 °C)

	Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
LED	Input forward voltage	V _F		I _F = 10 mA	1.5	1.65	1.8	V
	Input reverse current	I _R		V _R = 3 V	_	_	10	μA
	Input capacitance	Ct		V = 0 V, f = 1 MHz	_	45		pF

9. Coupled Electrical Characteristics (Unless otherwise specified, $T_a = 25$ °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Trigger LED current	I _{FT}		$V_{OC} \ge 5 V$	_	_	3	mA
Open voltage	V _{oc}		I _F = 10 mA	7	9	—	V
			I _F = 10 mA, T _a = 125°C	_	5	—	
Short-circuit current	I _{SC}		I _F = 10 mA	12	30	_	μA
			I _F = 10 mA, T _a = 125°C	_	12	_	


10. Isolation Characteristics (Unless otherwise specified, T_a = 25 °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Total capacitance (input to output)	Cs	(Note 1)	V _S = 0 V, f = 1 MHz	_	0.8	—	pF
Isolation resistance	R _S	(Note 1)	V_S = 500 V, R.H. \leq 60 %	10 ¹²	10 ¹⁴		Ω
Isolation voltage	BVS	(Note 1)	AC, 60 s	3750	_	_	Vrms
			AC, 1 s in oil	_	10000	_	
			DC, 60 s in oil		10000	_	Vdc

Note 1: This device is considered as a two-terminal device: Pins 1 and 3 are shorted together, and pins 4 and 6 are shorted together.

11. Switching Characteristics (Unless otherwise specified, T_a = 25 °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Turn-on time	t _{on}		I _F = 10 mA, C _L = 1000 pF	—	0.2	1	ms
Turn-off time	t _{off}		See Fig. 11.1.		0.3	1	

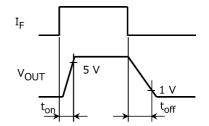
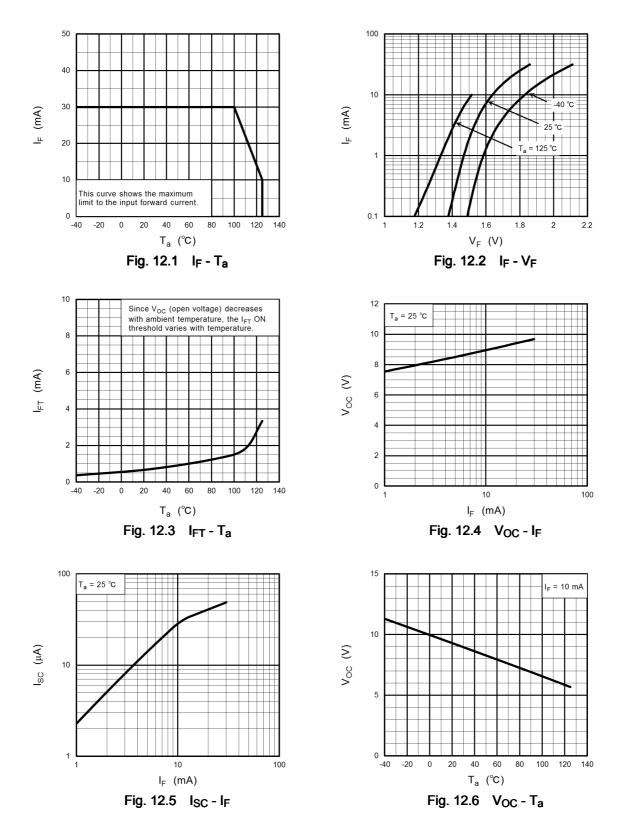
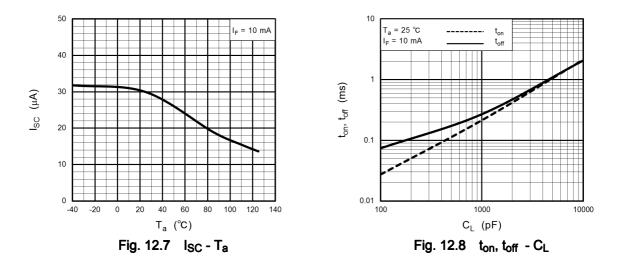
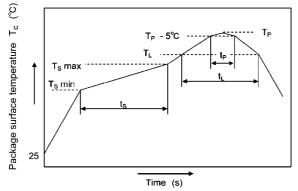




Fig. 11.1 Switching Time Test Circuit, Waveform

12. Characteristics Curves (Note)

Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

13. Soldering and Storage


13.1. Precautions for Soldering

The soldering temperature should be controlled as closely as possible to the conditions shown below, irrespective of whether a soldering iron or a reflow soldering method is used.

When using soldering reflow (See following Figures)

Reflow soldering must be performed once or twice.

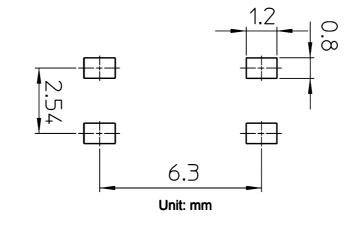
The mounting should be completed with the interval from the first to the last mountings being 2 weeks.

	Symbol	Min	Max	Unit
Preheat temperature	Τs	150	200	°C
Preheat time	ts	60	120	s
Ramp-up rate (T_L to T_P)			3	°C/s
Liquidus temperature	TL	2	17	°C
Time above T_L	tL	60	120	S
Peak temperature	Τ _Ρ		260	°C
Time during which T_c is between ($T_P - 5$) and T_P	t₽		30	s
Ramp-down rate $(T_P \text{ to } T_L)$			6	°C/s

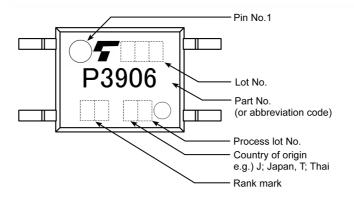
Fig. 13.1.1 An Example of a Temperature Profile When Lead(Pb)-Free Solder Is Used

 When using soldering flow (Applicable to both eutectic solder and Lead(Pb)-Free solder) Apply preheating of 150 °C for 60 to 120 seconds. Mounting condition of 260 °C within 10 seconds is recommended.

Flow soldering must be performed once.


When using soldering Iron (Applicable to both eutectic solder and Lead(Pb)-Free solder)
Complete soldering within 10 seconds for lead temperature not exceeding 260 °C or within 3 seconds not exceeding 350 °C

Heating by soldering iron must be done only once per lead.


13.2. Precautions for General Storage

- Avoid storage locations where devices may be exposed to moisture or direct sunlight
- Follow the precautions printed on the packing label of the device for transportation and storage.
- Keep the storage location temperature and humidity within a range of 5 $^\circ C$ to 35 $^\circ C$ and 45 % to 75 %, respectively.
- Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- When restoring devices after removal from their packing, use anti-static containers.
- Do not allow loads to be applied directly to devices while they are in storage.
- If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.

14. Land Pattern Dimensions (for reference only)

15. Marking

16. EN60747-5-5 Option (V4) Specification

• Part number: TLP3906

• The following part naming conventions are used for the devices that have been qualified according to option (V4) of EN60747.

Example: TLP3906(V4-TPL,E(O

V4: EN60747 option

TPL: Tape type

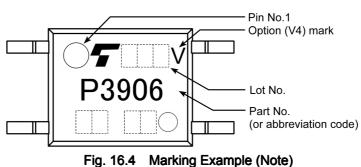
 $\mathrm{E:}\ [\mathrm{[G]]}/\mathrm{RoHS}\ \mathrm{COMPATIBLE}\ \textbf{(Note 1)}$

Note: Use TOSHIBA standard type number for safety standard application. e.g., TLP3906(V4) \rightarrow TLP3906

Note 1: Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.

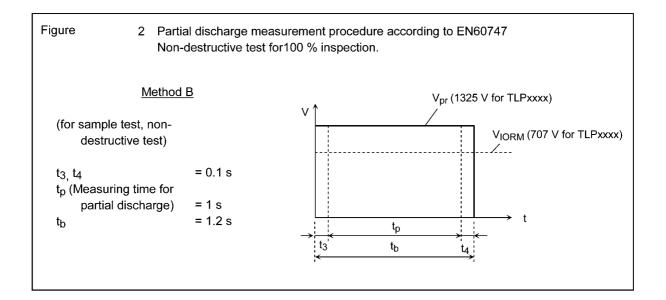
RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronics equipment.

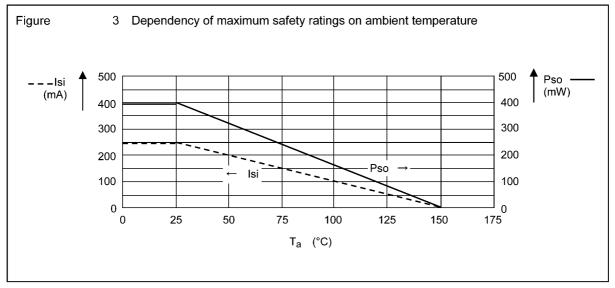
Description	Symbol	Rating	Unit
Application classification			
for rated mains voltage ≤150 Vrms for rated mains voltage ≤300 Vrms		I-I∨ I-III	_
Climatic classification		40 / 125 / 21	_
Pollution degree		2	_
Maximum operating insulation voltage	VIORM	707	Vpeak
Input to output test voltage, Method A $V_{pr} = 1.6 \times V_{IORM}$, type and sample test $t_p = 10$ s, partial discharge < 5 pC	Vpr	1131	Vpeak
Input to output test voltage, Method B $V_{pr} = 1.875 \times V_{IORM}$, 100 % production test $t_p = 1 \text{ s, partial discharge } < 5 \text{ pC}$	V _{pr}	1325	Vpeak
Highest permissible overvoltage (transient overvoltage, t _{pr} = 60 s)	VTR	6000	Vpeak
Safety limiting values (max. permissible ratings in case of fault, also refer to thermal derating curve) current (input current I _F , P _{SO} = 0) power (output or total power dissipation) temperature	I _{si} P _{so} T _s	250 400 150	mA mW °C
Insulation resistance $V_{IO} = 500 \text{ V}, \text{ T}_a = 25 \text{ °C}$ $V_{IO} = 500 \text{ V}, \text{ T}_a = 100 \text{ °C}$ $V_{IO} = 500 \text{ V}, \text{ T}_a = \text{ T}_s$	R _{si}	≥ 10 ¹² ≥ 10 ¹¹ ≥ 10 ⁹	Ω


Fig. 16.1 EN60747 Insulation Characteristic

Minimum creepage distance	Cr	5.0 mm
Minimum clearance	CI	5.0 mm
Minimum insulation thickness	ti	0.4 mm
Comparative tracking index	CTI	175

- Note: If a printed circuit is incorporated, the creepage distance and clearance may be reduced below this value. (e.g., at a standard distance between soldering eye centers of 3.5 mm). If this is not permissible, the user shall take suitable measures.
- Note: This photocoupler is suitable for **safe electrical isolation** only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.





Note: The above marking is applied to the photocouplers that have been qualified according to option (V4) of EN60747.

Figure1Partial discharge measurement procedure according to EN60747Destructive test for qualification and sampling tests.			
Method	<u>A</u>	VINITIAL(6 KV)	
(for type and sampling t destructive tests)	ests,	$V \uparrow V \downarrow V_{pr}$ (1131 V for TLPxxxx)	
t ₁ , t ₂	= 1 to 10 s	V _{IORM} (707 V for TLPxxxx)	
t3, t4	= 1 s		
t _p (Measuring time for			
partial discharge)	= 10 s	$0 \xrightarrow{I} \qquad \qquad$	
t _b	= 12 s	t_3 t_p t_4	
t _{ini}	= 60 s	t ₁ t _{ini} t ₂ t _b	

17. Embossed-Tape Packing (TP) Specification for Mini-Flat Photocouplers

17.1. Applicable Package

Package Name	Product Type	
SO6	Photocoupler	

17.2. Product Naming Conventions

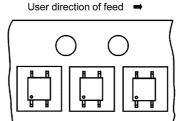
Type of package used for shipment is denoted by a symbol suffix after a part number. The method of classification is as below.

Example) TLP3906(TPL,E(O

Part number: TLP3906 Tape type: TPL [[G]]/RoHS COMPATIBLE: E **(Note)** Domestic ID (Country / Region of origin: Japan): (O

Note: Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.

RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronics equipment.


17.3. Tape Dimensions Specification

Таре Туре	Division	Packing Amount (A unit per reel)
TPL, TL	L direction	3000
TPR, TR	R direction	3000

17.3.1. Orientation of Device in Relation to Direction of Feed

Device orientation in the carrier cavities as shown in Fig. 17.3.1.1.

L direction

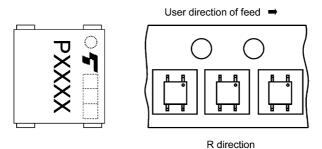
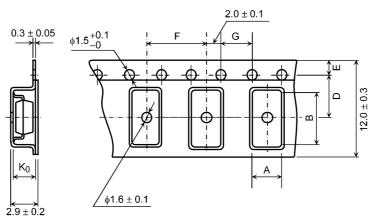


Fig. 17.3.1.1 Device Orientation

17.3.2. Empty Cavities


Characteristics	Criterion	Remarks
Occurrences of 2 or more successive empty cavities		Within any given 40-mm section of tape, not including leader and trailer
Single empty cavity	6 devices (max) per reel	Not including leader and trailer

17.3.3. Tape Leader and Trailer

The start end of the tape has 50 or more empty cavities. The hub end of the tape has 50 or more empty cavities and two empty turns only for a cover tape.

17.3.4. Tape Dimensions

Tape material: Plastic (for protection against static electricity)

TableTape Dimensions (unit: mm, tolerance: ±0.1)

Symbol	Dimension	Remark
A	4.0	_
В	7.6	_
D	5.5	Center line of embossed cavity and sprocket hole
E	1.75	Distance between tape edge and sprocket hole center
F	8.0	Cumulative error +0.1/-0.3 (max) per 10 empty cavities holes
G	4.0	Cumulative error +0.1/-0.3 (max) per 10 sprocket holes
K ₀	2.6	Internal space

17.3.5. Reel Specification

Material: Plastic

TOSHIBA

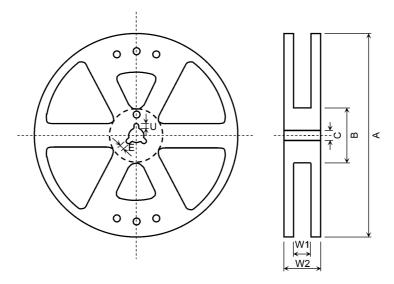
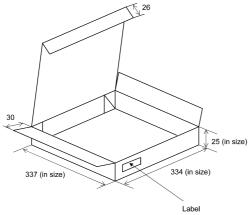



Table Reel Dimensions (unit: mm)

Symbol	Dimension
А	$\phi 330\pm 2$
В	$\varphi 80 \pm 1$ or $\varphi 100 \pm 1$
С	$\varphi 13 \pm 0.5$
E	2.0 ± 0.5
U	4.0 ± 0.5
W1	13.5 ± 0.5
W2	17.5 ± 1.0

17.4. Packing (Note)

Either one reel or ten reels (max) of photocouplers are packed in a shipping carton.

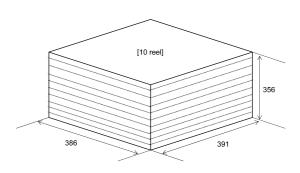


Fig. 17.4.2 10 reel/carton (unit: mm)

Note: Taping reel diameter: \$330 mm

17.5. Label Format

The carton bears a label indicating the product number, the symbol representing classification of standard, the quantity, the lot number and the Toshiba company name.

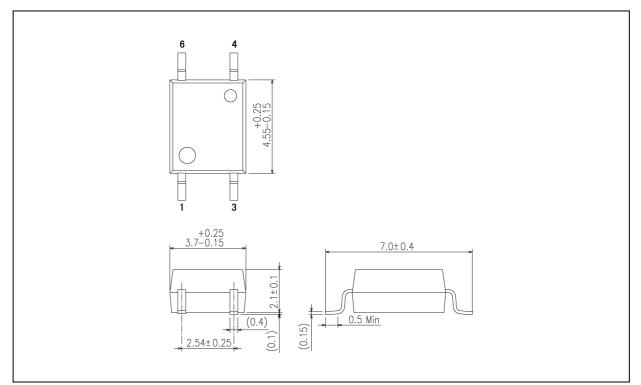
17.6. Ordering Information

When placing an order, please specify the part number, $I_{SC}\, rank,$ tape type and quantity as shown in the following example.

Example) TLP3906(TPL,E(O 3000pcs

Part number: TLP3906 Tape type: TPL [[G]]/RoHS COMPATIBLE: E **(Note)** Domestic ID (Country / Region of origin: Japan): (O Quantity (must be a multiple of 3000): 3000pcs

Note : Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.


RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronics equipment.

Package Dimensions

TLP3906

Unit: mm

Weight: 0.08 g (typ.)

Package Name(s)

TOSHIBA: 11-4M1S

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331